
تأثير الكثافة السكانية والإشعاع الشمسي على أشكال المباني السكنية: دراسة حالة قرى الخريجين على بحيرة البرلس

Mokhtar H.Akl, Dr. Sherif A. Sheta and Dr. Ibrahim R. Hegazy

1 Teaching Assistant, Architecture Dept, Mansoura University
2 Associate Professor, Architecture Dept, Mansoura University
3 lecturer, Architecture Dept, Mansoura University

Abstract
This paper suggests a methodology to regenerate Egyptian Hinterlands Graduates villages at El-Burullus Lake into sustainable neighborhoods. The study defines urban potentials for the through the analysis of current physical urban context and population densities and their needs. It focuses on the optimization of physical urban form for residential buildings. The proposed methodology introduces and analyzes alternative design models for the residential building forms with respect to residents’ needs, approaching high density population as a strategy to develop social, economic and environmental aspects of sustainability. The effect of solar radiation on design alternatives could be measured using simulation tools to develop design concepts.

The conclusion of this study indicates that the morphology of a sustainable neighborhood and the solar design of its residential buildings should serve as a foundation of sustainable environment and offer suitable solutions for urban problems in similar cases.

Keywords
Neighborhood Design, Urban morphology, El-Burullus lake, Solar radiations
1. Introduction
Sustainable Developments should advocate the environmentally responsible model of neighborhoods and provide socially balanced population with suitable opportunities for habitats’ income and diversity of use with suitable energy and mobility systems. This paper focuses on the physical forms of the residential buildings and their capacity.

1.1. Research problem
In Egypt, urban impact for unsustainable planning led to many problems which could be summarized in 3 main issues (1) over-population with complicated urban crises and challenges in old cities at Nile valley and Delta, (2) 95% of Egypt lands are vacant and undeveloped and (3) the planning strategies for some new urban approaches aren’t sustainable and couldn’t satisfy the community needs as introduced in the case study.

1.2. Aims of the research
This paper aims to propose a methodology for optimizing urban parameters that would collectively promote high density urban growth and maximize land efficiency, optimize the use of land, and provide a variety of lot sizes and housing types to cater for the diverse housing needs of the community, at densities which can ultimately support the provision of local services with the use of solar design simulation. It aims to develop the 3 villages so that they could be regenerated into Sustainable Neighborhoods.

1.3. Research methodology and objectives
The research methodology and the objectives could be summarized as following:

- **Objectives**
 - Define people needs
 - Define strengths and weaknesses
 - Selecting an urban clustered area (88 units) to apply alternatives simulation
 - Detect surfaces affected by solar radiation for solar design analysis

- **1. Introducing the case study**
- **2. Analysis of current residential buildings morphology and types**
- **3. Proposing different alternatives for building forms according to population capacity with respect to people needs and urban interventions**
- **4. Examining alternatives according to solar radiation analysis using Autodesk Revit and Vasari simulation tools.**
- **5. Outputs and Recommendations**

![Fig. 1: The research methodology and objectives, Source: Authors](source)

2. Introducing the Case Study
2.1. Case study location
El-Burullus Lake lies on the eastern side of Rosetta branch of the Nile River at Delta region. Delta region is characterized with very high densities in most of its Urban & rural areas with Deteriorated infrastructure suffering from unsustainable urban impacts except for the coastal axis which has the ability for recent development.

The case study is located at Kafr el-Sheikh Governorate at Metopas center at the north...
of El-Burullus lake where the 3 villages are related to its management and polices. It connected to the international coastal road which acts as an important axis for future urban development and to an electricity link which would provide an opportunity to the feasibility of renovating sustainable neighborhoods.

The area is divided into 3 locations named by SidiTalha, El-Said El-Badawy, and Ebrahim El-Desouky villages, Fig. 3.

2.2. Analysis of site potentials
El-Burullus lake area is characterized by many resources such as agriculture, livestock farming, fish farming, reed harvesting, bird hunting, tourism and recreation but human interventions and pollution threatened its biodiversity and led to excessive use of resources(Shaltout, 2010).

El-Burullus region is divided into 3 main zones as shown in Fig.4 (1) urban development of the coastal area to be touristic and residential area and services, (2) the area of 3 villages Surrounded by their own agriculture lands which the most important resource for residents economics, each family has 2 or 4 acres from agriculture lands and (3) agriculture lands of Kafr El-Sheik governorate

Water bodies are considered as the 2nd main resource for residents’ economics which are (1) Mediterranean sea which could be an important resource for agriculture through water desalination, (2) Burullus lake: The water quality of the lake has changed over time; these changes are related to human intervention and eutrophication processes and (3) Nile river (Rosetta branch)
Some of the current local residents are from the surrounding rural and urban areas and most of them left their own lands vacant.

The abandonment of the residents has many reasons such as the lack of services and job opportunities at the 3 villages which are neglected without any development, the salinity of soil in some agriculture areas, no development in agriculture and irrigation techniques, the unsuitable design for the residential buildings, although the site is connected to electricity but there is no approaches for integrating sustainable energy techniques or energy conservation, no water management although the availability of surrounding water bodies, unsuitable sewage system affected by rainfall in winter finally but not least no available stations for transportation or internal mobility system.

2.3. Analysis of 3 Graduates villages land use

The study deals with population densities and building capacity and its morphology problems. As shown from the previous analysis, the location of the 3 Graduates villages is surrounded by the agriculture which prevent any further horizontally urban extensions so any urban extension. The following comparative land use analysis for the 3 villages defines the percentage of residential zones and its population capacity compared with the area required for services and open areas represented by internal streets and urban spaces and the population (Table 1).

The percentage of urban land use shows that 3 villages have a very low population density which doesn't exceed 4600 person in about 0.58 km² in the case of El Said El-badawy village. Compared with low density, high density has economic, social and environmental benefits as it provides efficient land use, reducing public service costs, car dependency and parking demand, increasing support for public transport, public open space and more energy efficiency.

Services areas (educational, medical, recreational, social activities ... etc) are planned to allow people to make short walking trips and provide other opportunities for individuals to live and work in close proximity but they are mostly empty without sufficient services so residents have to travel to other places. Some of the residential buildings are converted to commercial uses for residents daily needs especially in El-Said El-Badawy as the distance exceeds 500 m to services area at the south end of the villages.

Internal Streets are unpaved and urban spaces are vacant without any landscaping or urban design.
Table 1: Comparative analysis of urban land use for 3 villages, Source: Authors

<table>
<thead>
<tr>
<th>Sidi Talha village</th>
<th>El-Said El-Badawy village</th>
<th>Ebrahim El-Desouky Village</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area = 0.26 km² - Estimated population = 1684</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Types =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A - One storey, semi-attached building - 421 units, each 192 m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total area = 0.58 km² - Estimated population = 4600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Types =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A, Type B - One storey, semi-attached buildings - 1150 units, each 192 m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total area = 0.38 km² - Estimated population = 3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residential Types =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type A, Type B - One storey, Semi-attached buildings - 751 units, each 192 m²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.4. Building Forms and Capacity (Housing Types)
The residential buildings are classified into 2 Types (Type A, Type B), each of them is semi-attached one storey building. The following table shows the 2 residential building types and design, built area ratio and its compatibility with residents needs.
Table 2: Housing Types of Graduates villages, Source: Authors.

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Built area = 34 m² (Flat roofs)</td>
<td>Built area = 44 m² (Flat roofs)</td>
</tr>
<tr>
<td>About 17.5% from total unit area</td>
<td>About 23% from total unit area</td>
</tr>
</tbody>
</table>

As shown from Table 2, it doesn’t exceed 23% as a building footprint ratio and the rest should be used as an agriculture area for production of crops but the sandy soil which have very little clay to retain nutrients and so are not fertile and need to be replaced with productive soil to achieve the main design concept. The building units themselves with areas 34m² and 44m² at Type A and Type B respectively aren’t sufficient to the residents needs as shown from people interventions, each unit should accomodate a family consists of about 4-6 persons with the ability for vertical extension for their sons and more residents for future development.

Fig 6: Residents interventions, Source: Authors.

Most of residents made many modification on the building form and its design expanding its spaces to be suitable for their needs. Other interventions are done by reconstructing new buildings on the whole
area with different structures to be further extended vertically without any regulations to control and optimize the building form or design character as shown in Fig 6.

3. Designing and Examination of Alternatives

The alternatives are concerned with maximizing the land value of housing areas to accommodate high densities with a minimum population 15,000 people per km² (UN-Habitat, 2014) for each village so that it could be suitable for urban development for its services and infrastructure with a sustainable management of the surrounding resources and urban economics to be a model for a sustainable neighborhood.

Each Alternative should be represented as a family semi-attached housing with min. 2-3 storey with the ability to be extended vertically without exceeding 15 m height (max. 4-6 stories) according to the roads width respecting the Egyptian code for residential building. The ground level could be used for commercial, daily needs and building services.

In case of El Said El-badawy village, the population could be doubled or tripled by adjusting building form by adjusting its size area and the vertical extensions to satisfy the residents' needs. An urban clustered area (about 88 units) is selected to apply the suggested alternatives and their simulation.

3.1. Building forms and capacity (Housing types)

The study suggests 3 alternatives to be discussed and evaluated. They are designed as follows:

Alternative 1: Most of people intervention demolished the current building to use the whole area as 2 or 3 storey. The alternative suggests 100% built area to be discussed and evaluated.

Alternative 2: This alternative design is inspired by new cities regulation in Egypt and their building ratio to ensure more green area and provide 3 elevations for better spatial design, solar access and ventilation.

Alternative 3: Same as alternative 2 but with smaller building ratio and smaller dwelling units but provides more urban spaces with more accessibility of wind and solar radiation.

The following table (Table 3) shows the design alternatives according to the built floor ratio and the 3d forms.

As shown each form consists of 4 units which are attached in alternative 1 and semi-attached at the other 2 alternatives. The diagrams show different heights for each alternative from 1 to 4 storeys to show different building forms as the vertical extensions could be left to the owners' needs or defined by specific building requirements as a planning strategy.

The Ground floor could be used for commercial needs as a mixed use strategy to provide a better access from homes to needed facilities and protect the community wellbeing and area livability.
Table 3: Design alternatives, Source: Authors.

<table>
<thead>
<tr>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage = 100%</td>
<td>Coverage = 60%</td>
<td>Coverage = 42%</td>
</tr>
<tr>
<td>Built area = 192 m²</td>
<td>Built area = 115 m²</td>
<td>Built area = 80 m²</td>
</tr>
<tr>
<td>2 dwelling units/storey</td>
<td>1 dwelling unit/storey</td>
<td>1 dwelling unit/storey</td>
</tr>
</tbody>
</table>

Building Cores

Commercial daily needs for mixed use

3.2. Solar radiation analysis for proposed alternatives
The importance of solar radiation analysis is to measure the amount of incident solar energy on building horizontal and vertical surfaces. It could be linked to energy simulation to determine load demands, predict energy generation by integrating PV systems and control solar thermal systems for domestic hot water. It is also important as a guide for material selection for building envelope as well as establishes the best orientation of building to reduce energy loads at the first design phases if it is available (Trubiano, 2013).

Revit/Vasari simulation tool is used for performing the solar radiation comparative analysis for the 3 alternatives. It is quick, easy to use and iterative test for visualizing and quantify the amount of solar radiation received by buildings while creating the conceptual mass of each alternative (Autodesk).

Solar radiation simulation analysis occurred on summer 21/06/2015 from 10 AM to 4 PM. Cumulative solar radiation range detected by Autodesk Vasari from 0 – 4.2 KWh/m² where the site coordinates are Longitude 30.608 and Latitude 31.446. Table 4 shows the solar results on the building forms and cumulative solar radiation comparative results of the 3 alternatives.
Table 4: Solar radiation Simulation for Design alternatives, Source: Authors using Autodesk Revit/Vasari.

<table>
<thead>
<tr>
<th>Alternative 1</th>
<th>Alternative 2</th>
<th>Alternative 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(kWh/m²)
The results show that the 3 alternatives are arranged from the largest value to the lowest one in terms of cumulative solar radiation results as following; alternative1, alternative2 and alternative 3. Comparing alternative 3 with the 1st and 2nd alternatives results, the floor area is too small so the roofs and surfaces exposed to solar radiation will give the minimum values.

![Fig 7: Cumulative solar radiation comparative results on residential building roofs and facades, Source: Authors.](image)

![Fig 8: Cumulative solar radiation comparative results on residential building roofs, Source: Authors.](image)

In case of alternative1, although it gives the best opportunity for solar design and application of PV cells as the surface floor area is the whole plot area but it offers large dwelling units which makes development of residential units expensive and difficult to market. Skylight ducts should be introduced for providing good lighting and ventilation for dwelling spaces as the units are very attached to each other with one façade.

The Study suggests that alternative 2 will be the most suitable one comparing to the others for the following reasons:

- The surface floor area is suitable for residents' needs and their economic incomes.
- Each dwelling unit has 3 facades with suitable spaces between buildings to provide good daylighting and ventilation for the interior spaces.
- Solar radiation simulation shows that the difference between alternative 1 and 2 is too close and its ability to integrate sustainable solar techniques is available.

4. Conclusion and Recommendations

The case study results show that the current built environment have many problems which led to the abandonment of its residents with the absence of development strategies to regenerate these villages into sustainable neighborhood models neglecting the potentials of the site and the surrounding environment. The development of site infrastructure, Mobility systems, services, energy and resource management must be integrated with the regeneration of building forms and its population to accommodate high density to ensure economic, social and environmental sustainability.

The study deals with the current urban context, landuse and building forms maximizing the land value of housing zones offering a suitable areas and further extensions to satisfy residents needs. The study offers a methodology depending on studying, discussing and analyzing different building forms comparing them using simulation tools as a guide to environmental design approaches in the first design sketches and concepts.

The study suggests 3 alternatives. Although the results recommend one alternative according to the research
parameters, more alternatives could be represented with more studies and details can be shared and discussed with state authorities and community stakeholders to define policies and regulations to ensure robust sustainable development strategy in the context of adapting to changes in new urbanism and smart growth principles in Egypt.

5. References

