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ABSTRA{T: :

Uninanned  aenal  vchicles (UAVs) have useful military applications, including
reconnaissi nce, search ang destroy, search and rescue missions in hazardous environments such as
battiefields or disister areas. Recently, there has been considerable interest in the possibility of
using large teams of UAVs functioning cooperatively to accomplish a large number of tasks e.g.
attacking lurgets. However, tais requires the assignment of multiple spatially distribuled tasks (o
zach UAV along vsith a feasible path that minimizes efTort and avoids threats.

Tas< Aliocation (TA) is one of the core sieps to effectively exploit the capabilities of
zooperative control of multiple UAV teams. i is an NP-complete problem -“non-determislic
polynomial time™, So the computation can't be implemented in real time, no chance for cooperation
among the team riembers, and no autonomy lor thesc vehicles. The reported papers in this ficld
consider thz aroblzm in static condition using different technigques (e.g. auction based. scheduling,
linear prog -amming}.
fn this paper. a ne'v dynami: rask allocation algorithm is presented that is based on the principles of
genetic algorithm  GA). It discusses the adaptation and implementation of the GA search strategy to
lhe task allhcation problem .n the cooperative control of multiple UAVs. Simulatian results indicate
that the G\ strategy is a feasible approach for the task allocation problem. and the resulted task
assignment is near optimal. This means that the total cost of the team is minimized. A major
advantage s its low computation cost
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I. Introducrion:

Recertly military conflicts  have
Jemonstratzd the strateg'c value of 1JAVs.
The roles of UAVs ere evolving from
teconnaissirice purpase to sffensive mission
a5 misst ¢ Jaunching  platform. The
capabilities of UAVs wilt  be further
waproved if multiple UAVs are cooparative
(1. Achicvement of cooperation among
UAVSs requirzs a method of assigning tasks.
TA is an important problzm to minim:ze the
yserall texrn cost. Besides. the assigning
algorithm arist ensure that all targets are
approachec in an optimal manner.

Therz are two types of task allocation
problems: static and dynamic. Static task
allocation means that the assignment may be
made at tirme t such that all of the UAVs are
commilted. vhile dvnamic tesk allocation is
m.ade at any of several dizciete points of time
[Z]. Determining which of U apgents are
assigned to which of T targets is a problem of
order T i1t complexity, o task allocation is
i NP comipliete optmizatioa problem [3].

Thepz are a  wide wvariety of
approaches :hat have been reported for
solving the task allocation problem in various
applications. They :an be classified into the
following  categories:  network  flow
ptimizaticn [4], market sased approach [S].
irteger litear programmirg, [6] fuzzy
approach |7°. and genectic algorithms [8].
Because of tie intractable nature of the TA
problem and its ir:portance in cooperative
zontrol, it s desirable 1o explore other
avenues for developing good
heuristicalgorithm  for the problem. The
genetic a zorithm (GA) is an intelligent
probaplistic search algorithin that modzls the
process of na.ure se:ection znd genetics [9]. It
is an iterative algorithon tha: rmaintains a pool
3" feasible solutions for eech iteration. The
GA starts with a szt of randomly sclected
chromosomes as th2 initial population that
sncodes a set of possivle sclutions. Variables
> a probleir are represenied as genes in a
chromosome,  and  chromosomes  are
avaluated according (o their fitness values.
which are obtained bty evaluating the
considered filness

Jamal A. F. Azzam , Hassan El-Deip and Soliaman M. Sharaf

Recombiration typically involves two

operators: (1) crossover and (2) mutation.
Genetic operators alter the composition of genes
to create new chromosomes referred to as
offspring. The selection operator is. an artificial
version of nature sclection. a Darwinian survival
of the fittest among populations. to create
populations from generation to generalion.
Chromosomes with better fitness have higher
probabilites of being selected in the next
generation. Afler several generations, GA can
converge to the best solution. GA has many
advantages over other heuristic techniques. F'or
example it can be implemented in a few lines of
compuler code, it requires only primitive
mathematical operators. and it has high
probability to escape local minima.
In this paper, an explanation of a genetic
algorithm in dynamic case is introduced. For a
UAV in a fleet to be autonomous, it has to
compulte its trajectory and specify its target in
real time. [f a pop-up threat is arised or if a
member of the fleet is lost re-planning for the
trajectary and reallocation lor largets has 10 be
donce in real time, 0 optimize the overall
mission cost 1.e. to minimize the UAVs
trajectories threats and length. Consequently. the
fuel consumption and the Vehicles flying time
are minimized. The proposed algorithm is
implemented in dynamic situations. It gives the
near optimat solutions in a few seconds which is
suitable for fast reaction of the vehicles to the
new situations. The allocations in this case may
not be the same allocations produced when the
mission started. The rest of this paper is
organized as follows :

section 2 description ol the GA
algorithm, section 3 introducing GA algorithm
for task allocations section 4 implementing GA
for Dynamic allocations, section 5 the
simulation resulis.
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2. Description of the Generic Algorithm:

The genetic algorithm is a stochastic
ptimizaticn algorithm that was originally
motivated by the meckanisms of natural
selection and evolutionary genetics. Over the
last decade, GA has been extensivelv used as
search and optimization tools in various
problem  -domains. including science.
ommerce and  engineerirg. The primary
reasons for their success are their broad
applicability. ease of wuse and global
perspective. There are some  differences
between the GA and tracitional searching
algorithms. They can be summarized as
follows [10C];

e The :lgorithm works with a population
of sirirgs. searching many peiaks in
paraliel. as opposed to a single point.

e The GGA works direct.y with strings of
characiers representirg the parameter
sets, nol the parameters themselves.

e The (3A uses probabilistic rules instead
al deterministic rules.

e The (A uses objective function
inforrnation instead of derivatives or
other auxiliary knowledge.

GA is inherently parallel, because it =

simultaneo 15’y evaluates many points in the
parameler space (search space). So, the GA
has a reduced chance of cenverging to local
aptimum and would be more likely to
zonverge to global optimum, It requires only
information concerning the quality of thc
solution produced by each parameter se
‘objective “unction values). This differs from
many opti nization methods which require
derivative informatien or, worse el a
complete knowledge of the problem structure
and pararreters. Since the GA docs not
require such problem speciiic informarion, it
is more lexible than that most scarch
methads  [2]. Typically, the GA is
characierized by the following components:
s A genetic representation (cr an
encacing) for the feasible solution to
the optimization prosfem.

« A population of encoded solution.
e A fitness function that evaluates the
aptimality of each solution.
e Genelic operators that generate a new
population lrom the existing population.
* Contro! parameters.
The basic Now chart-of the GA is illustrated in
Fig. 1 where {¢ > 0) a small number to check

convergence.
3. The Proposed Technique:
3.1 Task Allocation (static situation):

For task allocation problems, applytng the
normal mutation and c¢ross over procedures on a
binary representation will lead to illegitimate
solutions i.e. assigning a non existing targets (o a
UAYV (it will preduce targets number

£oncd Cost Far
Eacn Lo psgm

£4
Oyl v

Fig. 1 The Procedurce Of The Genetie
Algorithm
morc than the specified number of targets T ). A
number of researchers [9],[11].]12] have created
operators that overcome this problem by
implementing an  opcrator  called  ordered
crossover (o be used. For targets allocation
problems the same operator can be used, and the
coding can be alphabetic or numeric. This
operator builds offspring by choosing a
subsequence of UAVs within a list of one
parent. [t also preserves the relative ordering of
UAVs from the other parent.
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Assurning the number o7 JAVs zquals the
number of targets i.e. U = T. for simplicity
numeric codes for targets are used j.e. 1 23 4
567809, and letters a'e used for UAVs: AB
CDEFGHIL As an initia. population the
first parent ®1 and the secend parent P2 can
be rardomly generated as:

T 1235 4356739
PL BCHR GE & T F I
P2 b HE DGA T BE

(1

This means that for P{ UAV B is assigned to
larget #1. C is assigred to target # 2. H is
assigned to target # 3 end so on. Two children
J1 and C2 are produced in the following
way. First. two cut lines are chosen for C1
and C2 for the high fitness chromoscmes.
The segments betwee cut points are copied
into the following offsarirg:

r 123456789
1 XX XGE ADXX (2)
TTXXXDG AL XX

Next. startimg front the secoad cut point of
ane parent. “he UAVs of th2 ather parent are
ropied in taz same drder. wmitting LAVs
already present between the tvo cul lines.

r 1234 56789
JVBFH GEADIB (3)
! FBC DGA L EF
The rposition of the segmenis in the

two children C1. C2 is the same and depends
n the heighis fitness. For one parent Cl a
autation operator can be done by exchanging
paces of randomly selected UAVs in the
shildren chromosomes. Ewvaluation can be
done by using a suitable fitness functions f.
The fitness function for any chromosome i
zan be evaluated as f; == 1/cost

or fi= (7 cos(t;). (4)
where (J is & suitable weighting factor. As the
zost of the ckromosome is veduced its fitness
is increased. Consequently, its probability to
be repeated in the next offspring is increased.
[t is called the repetition rate {RR) in the next
offspring. This RR is evaluated as the fitness
of the individual chromosome over the
average fitness i.e.
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RRi=fi /(X (f)/n) (5)
The chromosomes that have values (>1) are
optimal and kept in the next offspring. So. the
solution is approaching optima by increasing all
RRi to be > 1 (i = 1.....n) with iterations. It mus)
be noted that if the RR increased than 1 it is
considered to be only | since each UAV 1s
assigned 1o one target only.
The optimal solution for the team is reached wher
RRi >l fori=l.....nie.

n
average RR = Y (RRi/n) =1 (6)

=)
Given the cost functions J for n UAVS to m
targets.  the algorithm can be explained as
follows:
Step 1 initiate two random population P1, P2 as
shown in Egn.}
Step 2 evalvate the cost Ji for every
chromosome in the population. Then compute
the fitness function f; by Eqn.4.
Step 3 compute the repetition rate RR for every
chromosome by lign. 5 for PI. P2.
Step 4 for any chromosome in P1 where RR>
determine two cut lines around it. The same two
cut lines for Pl are determined for P2. If the
chromosome that have RR >1 ar¢ not adjacent
then more than two lines must be determined.
Step 5 in P1 keep all chromosome in between
the two lines in the next offspring C1 as shown
in Eqn.2. Execute cross over starting from the
first cut line in P2, Omit any existent
chromosome (already kept in Cl) as shown in
Eqn.2.
Step 6 execute the mutation process, simply by
exchanging the position of two chromosomes in
T,
Step 7 repeat the same steps 4, 5, 6 for P2. till
fulfilling the exit condition.
Step 8 repeat step 3 to step8 till optimal or near
optimal solution is reached. i.e. the converge < ¢
The solution can be detected from the solution
average fitness 2 (f}) /n
3.2. Dynamic Reallocation:
The autonomous UAVs plan their trajectories,
and the GA algorithm assigns them to targets.
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These precesses are in eal time, while

the vehicles are cxecuting the planned
trisjectories. Tae situation in tac battle field can
be chanped due to any unexpeced reasons, e.p.
new  threats are  detected, new largels are
explored. a :eam member is lost. . ..ewe. In this
czse. the team re-plans trajectories according to
the new situation. The GA is uned to reallocate
the team members.
The initial offspring is no: randomly chosen,
but the Jasi allocation bzafore the new situation
airside is the beginning population. So, if at
tine (t}) a new situation airside and the
allccation is Cl(t). C2(t), sterting from the
current positions of the (n) vehicles the real
time trajectory planning zigorithm computes
the new feasible trajeclories to the m targets.
The (m x © 1 minimum cost functions | of
these trajectories are produced and passed 1o
the TA algorithm. By its rum the TA
reallocates  the  vehicles  from  its  corrent
positions 1o the targets. The same algorithm
explained in 3.1 is used considering the initial
population as; P1 =CIl(). end P2 =C2(1)

4. Simulation Results :

In & real mission, tae number of
vehicles (m) rnay be more or less than the
nmunber of specified rargets (n). So, some
targets may be assignad to morce than one
vehicle (in the fisst case where m > n}. In the
othar case (rn < n) a vehicle may be assigned to
more than onc target one after another. In this
paper.  the  following  assumptions are
considered:

- The number of vehicles anc ta-gets are cqual
i.e. m = n, and each target i3 assigned to one
vehicle.

- The vehicles are equippec. wi'k the necessary
systems such as:  sharing  information
tranisceivers, anti-jammers, anti-decoyers, anti-
ccellation,  and  different  flying  phases
algorithms (eg. taking off -landing- attacking)
. elc.

4.1 Static Allocation:

The algorithm is applied to allo:ate 6 UAVs (A
1o F) o 6 targets (1 to 6), the cosis of
trajectori¢s are shown in the table 1.
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These costs are produced from a
trajectory planning algorithm explained in Fig.
2. The cost function I for each trajectory 1s
composcd of two elements,

d=1 4+l (7

Where is the length cost and

I, is the threal cost

Tahle 1 The Cost Functions For 6 UAVs
Trajectories To 6 Targets

TyvU A B C D E F

| 1215 976 1170 2190 2054 2223
2 1214 1023 1237 1420 1972 1672
3 1557 1397 1617 1498 1526 1280
4 1456 124) 1458 1553 1684 1418
5 1379 1225 1424 1759 1860 1597
6 1216 2354 1498 2036 1328 1291

The lask assignment is obtained in 5 iteratiors as
shown in Table2. with the maximum total fitness
5.661. and average RR ratio = (5.661/6) = 0.94
which is sufficient for a near optimal solution
(optimal solution is achieved by verifying Eqn.
6.) (if RRi>1 it is considered only 1, since every
UAV is assigned only to one target). Fig.3
explains these trajectories for vehicles over a
Lostile territories. The trajectories are planned to
avoid the surface to air missiles (SAMSs) sites
and o minimize the path length and
probabilities of detection by the radar sites. The
GA is used 10 allocate each vehicle to a target.
The main objective is ta optimize the overall
cost for the team as a whole.

4.2 Dynamic Allpcation:

When the team members are cxecuting their
trajectories 10 the assigned targets a sudden
threat is detected (Shown as the shaded area in
Fig. 3). The threat is detected when the vehicles
are on the positions shown in Fig.2 assuming the
team has a rendezvous arrival time.

The trajectory planning algorithm re-plans a new
group of the minimum cost feasible trajectories
and computes their costs. The cosis are listed in
Table 3. The GA is used on line 1o reatlocate the
largets as shown in Table 4.
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Table 2 The Fitness Functions For Each Generation

J: Generation !} Ger eration 2 Generation 3 Generation 4 Generation 5

T [Py RIS | P FASMRR) | P FUS(Bam) | Py FAX(E) /M) | Ps  FIC(R) /)

i B |44 _[-;_ .34 B 1.43 1.34 B 1.29 I

2 1137 C 1.06 C 1.132 C |.06 IS i.03

3 D 0.939 ™ 0.877 I 0.917 ) 0.877 F 0.98

4 [F 099 A 0902 F 0,987 A 0902 p 08l

5 i E  0.7% E 0.822 D 0,796 F 0.822 A 0.98

6 l A D73 B 0.989 A 0.73 C 0.989 E 0.953
CNiimess 5418 D TRy 5.0 5661
| Seost 8905 8092 8832 8092 7753
': Comoulatio 0.49 Second-ﬂ
{nlfime* — - e

Fig.2 shows the new trajectories afler the new
allocation. the population before the popup threat
aroused (generation 5 in Table 2 v is used as an
initizl population. The algorithm rcached a near
optirial  solution {average RR=

L

~— i}
~ 4£00

iyt '\-
£0l

-1{00

Kt

©

M. B

(5.976/6)

_

Fig.2 Targct.s Allocations For 6 Vehicles

Table 3 The Costs OF New Trajectories After

a Pop-up Threat Is Detected

TV A B

1 583 468
2 583 491
3 747 671
4 699 396
5 662 88
6 920 1130

C

562
594
776
700
684
719

jB E

1051 986
682 947
719 732
1603 808
8§37 893
977 637

F
1067
803
514
581
767
520

Table 4 Reallocation Of Targets

T P Firs (I'i'n)
0 B 1.30 -
2 > (.90
3 I 1.00
4 C 088
3 A 0.93
6 E 0.966
p 5.976
2. cost 1802
Computation 0.36
Time sccond
=
a \“a\o
abd 50N g
\
. .\.
< B

-1000

Fig.3 The New Trajectories For Newly

Assigned Targets
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Major  advantage  of  GA
algorithm is that it searches for
optimizarion (as stated ir Egn. 6) in a
paralle] manner. Coasequently, it
produces the near optima. solution in a
few seconds. This is a vital element for
the vehiclz attonomy i.c. to plan its
trajectorivs to its assigned targets in
real time. It is worth noting that, the
trajectory of the vehicle D to its pre-
assigned targe: (targe: 4) i1s no longer
feasible because of the new threat
(Fig.3). Hence. its rew trajectory is
forced to turn around the new threat
along with twe additional SAM iites
namely number 2 and 3 The cost of
that trajeciory is increased as explained
in table 3. ~roni table 4 and Fig.3 it is
clear thar the UAVs CC and D switched
their targets to optimize the total cost
of the feet. The trajectories and
allocatiors of the other vehicles A B.E,
and F are the same us before the re-
planning The average fitness of the
group is 9%6.

The: main -esults of the algorithm are
1) the search for optimal allocation is
irherently  parva’lel  and  very fast (the
computation "ime is stated intable 2 and abic
$1. (2 the resultent allocetion can be optimal
2 near optimal average RRi =1} (3) the
Algorithm car fall on lacal minima so the
dgorithm has 1o absarve if the solution lailed
in a tocal ninima or not. Hewever escaping
from i1 is casy and can be done by
zxchanging, two ehicle svmbols positions.
) the result for different iritial population
san be difterent. especially if the member of
UAVs is (imited. (&) GA algorithm enables
the autonomy of 1he UAVs

Conclusions:

Trkis paper introduzes a genelic
algornthm for zssignment of  autonomous
multi  uarmannzl  air vehicles.  The
assignments are produced in both static and
dynamic  envirotiments. Tae  application

E {7

This a crucial issue for vehicles safety. fuet
consumption and  flying time. ) The
oplimization process i1s inherently parallel. so
the computation cost is very small. This permits
the UAVs autonomy and adaptively to the
dynamic situations by re-assigning the vehicles
according to the new costs in real time. ¢) The
algorithm can simply detect and escape focal
minima. d} The algorithm is simply coded. ¢) an
impartant advantage of the algorithm 1s thai the
computation cost dos not increase polynomially
with the number of vehicles and the number of
targets. Consequently, the allocation problem is
no longer NP-complete.
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