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Analysis of photonic crystal fibers using full vectorial
finite difference method
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Abstract

The full-vectorial finite difference method (FV-FDM) is applied to perform modal solution to
photonic crystal fibers (PCFs). The effects of geometrical parameters of the circular and elliptical
holes on the effective index. the dispersion and the effective mode area of the fundamental mode
have been studied. PCF structure showing dispersion of 0+1.288 ps/nm.km over the wavelength
range from 1.3 ptm to 1.8 um has been reported. The applicability of using PCF as a pressure sensor

has been discussed.
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1: Introdugction

Photonic  Crystal Fibers (PCFs)
[1.2] have been“the.“'subjccl ol extensivé
research in recent years, This due to-their
unusual and very altractive optical
properties such as a wide single mode
wavelength range [3]. llarge Iet‘fec.tive
mode area [4] and anomalous dilspersion at
visible and near infrared wavelengths [5).
They are usually made ol silica with a
_regular array of air holes running along
the length of the fiber acting as a cladding.
Such slrucu.llre"' crea{es Qbandéaps- where
-pwropagation' at certain optical frequencies
s forlﬂjidden.l/-\ defect is introduced in the
periodié stru'éluré. in the form of either
largér air hole (low index core), or missing
hole (high index core) which introduces

guided modes within  the previously

forbidden bandgap.

Intensive  research. has ..been

ongoing during the last years to develop.

accurate modeling methods for photonic
"“crystal. Various * methods have been
developed for modal calculation of such
waveguides such as finite difference time
domain [6]. finite difference method [7]

and the finite element method [8. 9]. Due

to, the si.mpl}iqityvof i{§ imp’l:e‘men‘tatison and
the sparsity,o{ its feéultant matrix; hmode
solvers based ‘on the FDM have become
attraetive-nunierical methods for analyzing
the propagation characteristics of the
dielectric

¥ - &
especially for those complex dielectric

optical  or waveguides,

" waveguides without analytical solutions.

The FDM was first employed to solve the

scalar waveguide modes under the weakly

guiding approximation- [10]). For strongly

guiding structures, semi-vectorial
equations for optical waveguides with
arbitrary index profiles were derived [11.
12]. To obtain more accurate mode fields.
a full-vectorial finite difference scheme

was then proposed [13~15]- -

In this paper. the full vectorial
mode calculation using finite-difference
method (FV-FDM) [15] is used to perform
modal analysis of PCFs. The effects of
geomélrical parameters of the circular a'nd
ellipli;:all Iholler of the PCF on the effective
index, the eﬁcctive mode area and the
dispersion of the fundamental mode have
been studied thoroughly. PCFs with
circular and elliptical holes with low index
circular and elliptical core have been also

studied. Possibility of using PCFs in



Mansoura Engineering Journal. (MEJ). Vol. 32, No. 2, June 2007 P.3

pressure sensing has been discussed.

Following this introduction. a brief
mathematical analysis of the FV-FDM is
introduced in section 2. The validation and
simulation results of the modal analysis
program are detailed in section 3 by
addressing a standard rib waveguide and
PCFs Finally.

different structures.

conclusions are drawn.

2- Mathematical analysis.

The full-vectorial wave equations
based on electric fields can be derived

from the Maxwell's equations [16]:

VxE = -jogu,H (1)
VxH = jwn’e E (2)
v.(nE)=0 (3)
V. (H)=0 (4)

First by taking the curl of Eq. (1) and
substituting using equation Eq. (2):
Vx¥xE-n"k’E=0 (5)
where k=w/c is the free space wave
number and ¢ = I/ Jp g, 1s the velocity of
light in free space.

By using the vector identity

VxV x = V(V).V? 6)

Eq. (5) becomes

V'E+n’k’E=V(V . E) (7)
It the transverse components of an
electromagnetic ficld are known. then the
longitudinal component may be readily
obtained by applying Eq. (3). Therefore.

the transverse components are sufficient to

describe the vectorial properties of the

electromagnetic field. The transverse

component of Eq. (7):

V’E, +n°k’E, =V, {V. E + aE‘] (8)
0z

and using Eq. (3

v (v )+ I e s0 9

Since n(x. y) is z-invariant,on’/dz=0,
and so the longitudinal and transverse
components are related by

Substituting Eq. (10) into Eq. (8), and
using the transformation

E(x.y.z) = E(x,y)e™ (11)
one can derive the vectorial wave equation

VIE+ (n’k' -B7)E, =

v, [v, E, -lzv, (r'E, )] (12}

n
Eq. (12) can be written in matrix form

[16]

P. PYE) L(E ;
(P.‘1 PY)J E)" =B E>] (l )
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where the dilterential  operators  are

defined as ,
a1y a(nE a*
P“E‘:E_,_.I_‘ ( \) “‘C L,\"'n k-E
' ﬁ\tn X oy*
(14)
> o SN L.
AL B GICY |
N AN n N
(13)
3 a(n°E, 1 &
P\.E.:f—ﬁ' (_ )| oL (16)
axin oy X0y
L
o)) s
p\\E\:L.;_'T__(___)'__‘LL.,}_ (a7
& ,nt o Ox | Oyex

Eq. (13} is a full-vector eigenvalue
cquation. which describes the modes of
propagation for an integrated waveguide.
The 1o coupled (ransverse  field
components 15, and i, taken together are
the eigenfunction. and the corresponding
eigenvalue is 7. The four reniaining field
components can be eési]y derived from
these two Iransverse components by
applving Maxwell's équaiions. The field is

assumed scro at grid points immediately

outside of the computation window.

In order 10 translate this partial
differemial equation into a set of finite

ditterence second

equations. the
derivatives must be approximated in lterms

of the valucs of the fields at surrounding

grid points. The subscripts N. S. E and W.
were used to indicate the value of the field
{or index profile) at  grid-points
immediately north, south, east and west of
the point under consideration, P. Let one
of the twansverse field components
denoted by o(x. y). then the partial

differential equations can be approximated

by:

e {

— 1-': - W ‘2 P E 18
(?x'l (o] (¢ ¢p + ;) (18}
o9 | _‘ '
oy = 2Ax (d}t ¢W) 19)

Similar finite difference approximations

can be applied in the vertical direction:

by :
()v\.-’: ]ia- (Ay): (¢.g 2¢p +¢’\l) (20)
M i
(.\J) Iy 2.{3)’ (‘-JP'\ d)s) (‘-I)

Where Ax and Ay are the gird spacing in X

and y directions respeclively.

One of the most straightforward
techniques for deriving finite difference
approximations is Lagrange interpolation
[17}. The Lagrange interpolant is simply
the lowest order polynomial which goes
through all of the sample points. The
derivatives can then be easily computed
from the polynomial coefficients of the

interpolating function. For example. (o
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approximate the second derivative of ¢
with respect lo x al point P.&°¢/dx7|,. a
quadratic equation was fitted to the three
points d.. ép.and ¢ w:
A, Bx+Cx' incell W
¢ix) = A, +Bx+Cx* inceltP (22)
A, +Bx+Cx’ incellE
and the interpolating  function passes

through the three points ey . ey and ey

con - Aw B COWY (23)
S = Ay (24
€ ™ A[g + 3 Ax + C'(A\)2 (25)

Moreover, with adding additional
constraint that describes the continuity of

N

nTe, at x = + Ax/2, one can get:

. | 1 )
n 4}\“ -:BJ’\K +ZC/\X*} =

n:,.{A,, —%Bax+-}CAx’} (26)

n’, {A.,+%de+%(;dx:} =
M | | 1 L2 )
iltif\t'i-EB/_\x-'—Zc;l.\ (273

From Eq. {23) to Eq. (27) give five linear
equations. which can be solved for the five
unknown polynomial coeflicients.
(Actuallv. B and C are the only two
coefficients of interest because they

describe respectively the first and second

derivatives of ¢,) After some algebmic

sleps. onc can gel:

X_p
ox
1 (e’ +3n7,0° Je
VAN N T 3 7
Ax nT,+2n°, 0T +2n7 T, + 307, 00,
3(n‘, —n'“.)n',.
[ nind 2ni.n? 3 T2 wF
N +2n°gn™y + 2070, +3n°cn’,
2 2 ¥ 4
(nkn,,+3n N w) }
€
4 2 2 2 2 r 2 xE
N, +2n°,n°, +2n°,n°, +3n°.n°,
(28)
N
.
— =2C
ox”
l 4(nyn’ +nfn’ Je
+
1 4 2 X 1 I 2 2
AXT n', 4+ 2n°,n7, +2n°,n%, +3n° .07,
M ! 2 2 2Ll ),
4(“ eNp —M N7 + 207N w)n rCep
4 P2 2 2 r 2
N, +2nT,nT, +2n7, 07, +3nTny,
2 2 2 2 2
4(:1 N +07pn “.)n P
1 2 o Yt ol 3 L e“l:}
n, -+ nl-n|!+—nu-nv+ nn,
(29)

Equations (18). (20) and (29). can be
combined to yield the linite difference

representation of the operator Py,

T I
v (ayy 0
Oy n? k? 2 20.,, t

(A |7 () (&) | ()

1
2 (ay)’ 0

(30)
Where aw «@p and g are dimensionless

ratios defined:
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a{n? n? 12
(ntn’y +ntny )
tl'!\\ - ‘_!-_ TS - “ . ) k]
] - - - . - -
N =2nT n o+ 2nT o, 3nT nTy,
(31)
2An’, =00t w207 0 )

a, = :

PR I 3 8
n"p+InTnT 4207, nT, + 307, 07y,
(32)

J(H L RPN | R ]

k4 ¥ k] u
n'e + 200, + 20,0, + 3n' 0%,

1t

(33)
A similar treatment can be done w have

the other operators Py,. Py and Py

As described above. the finite
difference method essentially translates a
partial ditlerential  ecigenvalue  equation
into a conventional matrix eigenvalue
equation. The partial differential operators
have been replaced by large sparse
matrices, and the eigenfunctions have
been replaced by long vectors representing
a sampling of the -eigentunctions at
discrete  grid-points. Once this  matrix
equation was set up. one must solve for
the eigenvalues and  cigenvectors.
Naturally. since the matrix is of dimension
M = n, n, (where n, and n, is the number
of girds in x and y directions respectively),
there should be M eigenpairs. There are
many routines available for computing a

few selected eigenvalues of large sparse

matrices. The most. common technique is
the shifted inverse power method [18].
Unfortunately. this technique proves to be
relatively slow and it is only capable of
computing one cigenfunction at a time,
One of the most promising algorithms is
the implicitly restarted Amoldi method
[19]. This method allows one to
simultaneously compute a few of the
largest eigenvalues ol the sparse miatrix,
For this work, we used the built-in Matlab
function eigs. which implements the

Arnoldi method.

Once the propagation constant is
obtained, the chromatic dispersion D of a
PCF can then be calculated from the ngy

values versus the wavelength using

_ & dzncl'l

D= <
¢ dA”

(34)

The material  dispersion  given by
Sellmeier's formula [20] is directly

included in the calculation.

The cffective mode area can also be

calculated using [21]:

[nj"hE(x. y)r dxdy]
Ag=

ny ny

[ ey’ dxdy

(35)
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3-Validation and numerical
results

A program implementing the
FV-FDM method has been made. In order
to check the numerical precision of the
program, standard rib waveguide structure
whose cross section is shown in Fig. 1 will
be analyzed. The rib width, W is 3.0 pm.
the rib height. H. and the outer slab depth.
D. are such that H+D =1.0 um. and the
operating wavelength is 1.15 pm. The
refractive indices of the guiding, n,. and

substrate. n,. regions are 3.44 and 3.4,

respectively.
an
A\Y
———m—
[
| R
¥ ng
D
I, [

Fig.1. Schematic diagram of the rib
waveguide structure,

Table 1 shows the values of the
effective index of the fundamental mode
as the outer slab depth, D. varies from 0 to
0.9 ym. These- results were obtained by

using the FV-FDM and other vectorial

formulations including the vector finite-
element method (VFEM) with the results
from the Aitken extrapolation [22], the
iterative vector finite-difference method
with the transparent boundary condition
(IVFDM) [23]. the semivectorial finite-
difference . method (SVFDM) [24].- the
VFEM with higher order mixed-
interpolation-type clements (Edge-FEM)
[25] and full vectorial finite element based
beam propagation method (IDVFEBPM)
j26]. As may be scen from the table, there
is good agreement betwecen the results of

the FV-FDM and other

program

formulations.

Fig.2. Cross section of a PCF of twe rings of
18 elliptical air holes.
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| D(um) ' 'VFEM | VFDM | SV-FDM [ Edge-FEM [ IDVFEBPM [FV-FDM
i 0.1 17341220 | 341211 |- 3.4]1200 | 3.41209 341213 3.41222,
7_0_.2"?_3'.41235 3.41226 | 3.41217 | 3.41224 3.41229 341234
6"3 T 3412550 341247 | 341240 | 3.41247 3.41250 3.41252
. 04 341285 [ 341275 [ 341271 3.41278 3.41279 3.41279
ho.sjﬁ.mus 341311 | 341310 | 3.41312 3.41314 341314
X :3.4_13&65 341355 | 341358 | 3.41358 341358 | .3.41360
EO.? | 341410 3.41408 | 341415 | 341414 3.41410 341415
| 08 341475 | 341472 | 341484 | 341430 3.41473 3.41480 .
09 30 | - 17341568 | 3.41568 341558 | 341554

Tablel: Effective index for the rib waveguide, shown in Fig.l. for Different values of D,
D+H=Ilum.S=[l.lpumand W=3pum ati=1.15 um.

Column 2 (VFEM [22]). Column 3 (IVFDM [23]). Column 4 (SV-FDM [24]). Column 5 (Edge-
FEM [237). Column 6: (IDVFEBPM [26] ). Column 7: Present work

Then the FV-FDM program has
been used for performing. modal sotution
for different PCT's structures. Fig. 2 shows
a schematic djagram of the PCF.
consisting of two rings - of arrays ol
elliptical air holds with a and b arel the
semiaxes of the elliptic holes (the "radii"
in each direction.). They arc arranged with
hole pitch A ina silica Background whose
index of refruction taken as 143 at a

wavelength ol 1.55 mm.

For two rings of 18 air holes with
A=2 um, the effect of varying a or b on
the effective index. the dispersion and the

effective mode area was tested. First a was

kept constant a1 0.6 pm while varying b,
then keeping b constant at 0.6 pm while
varying a. The computing window size is
12 pm x12 pm. For a 120x120-grid
division, the co;mpulalion time i§ 20.531
seconds Jor one wavelength using a
I’emi{um IV 1.6-GHz, 256 MB .Ram
perS(;nal computer. Fig.J.a. Fig.3.b and
Fig.3.c show that, the effective index, the
dispersion and (he effective mode area of
the lundamental mode obtained {rom the
two cases are approximately identical. It
may _be noted that, the effective index and
the effective mode area for PCF with
circular holes (a=b) a.lre less than that fo'r

PCF with elliptical holes while the
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dispersion is greater. It can also be noted
that, with increasing the ratio (w'b) i {u>b)
or increasing the ratio (b/a) if (b>a), the
effective index and the effective mode

area increase while the dispersion

decreases. The dispersion curves become

more ftlat and the zero dispersion

wavelength is shifted to long wavelength

region with increasing the above ratios. So

1.42F

P9
one can reach the zero dispersion at the
desired wavelength by controlling a and b
values. Therefore. if PCF with circular
holes is exposed to external pressure and
the holes are deformed into elliptical ones,
one can expect the exposed pressure from

the behav‘ior of the effective index. the

dispersion or the effective mode area.

Hols pitch = 2 um

Effective Index

~eee a0 6 um, b= 0.3 um

[|— —aw0&um, b= 0.4um

—— a =06 um,. b=05um

1-4’1--0—a-0.6un1.b'0.6um
W 4=03um.b=0.6um
1.39“ > a=0dum. b=06um

( {_® a=0Sum.b=0§um

r——

1 L

"3

0g 1 12

1.4 16 8

Wavelength{um)

Fig.3.a Variation of effective index of the fundamental mode of two-ring PCF with elliptical holcs
with waveiength with a and b as parameters at A= 2 pm

150

Dispersion [psinmdm]

150

wavelength with a and b as para

— ™ —

L L

L L 1

- b B BB
[ I S LA B =

Hole pitch= 2 um

e g o6 00, b = 0.3 um
— —a=)6um, b=04um
——a=086um, b=05um |
—#—a=06 um, b=0.6 um
" 4=03um b=06 um |]
P a=04um.b=05um
. a-0.5um.b-0‘5umj

ri

o8 1 12

14 16 1.8 2

Wavelength{um}
Fig.3.b Variation of dispersion of the fundamental mode of two-ring PCF with elliptical holes with

meters al A=2 pm
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12 T T T
~a=06um b=03um
”r - —a=0.6um,b=04um 1.
ol a=06um,b=05um N
| ~—#—a=0.6um.b=06um L]
~'g gl ® a=03um.b=05um o
5 |l & a=04um.b=06um L
S 8| * a=05um.b=06um| Pr t
N & L — —————————— e '.I“.' /b/
g 7 Hele pitech =2 um ..-»"'”" s B
£
&
£
v

Wavelength{um}

Fig.3.c Variation of etfective mode arca ol the fundamental mede ol two-ring PCT with clliptical
holes with wavelength with a and b as paramecters at A= 2 pm

Fig.4.a The field distribution (L) of the fundamental mode of two-ring PCF with A= 2 pm and
a=h= 0.6 pm al 4= 0.8 pm

T TR A =‘|"
Y/ '_fif'ﬂ ol OIS
Rl ez g {)['.\i\ et IOy "»l',l}\\'- 31 ))

NEsSsS=)>
NS AN o]
MRS
TN
Fig.4.b The field distribution (E) of the fundamental mode of two-ring PCF with A= 2 pm and
a=b=0.6 ym at k= 1.8 pm
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Fip.d.a and Fig.4.b show that the
mode becomes less confined to the core
region with increasing the wavelength, so
the effecuve index decreases with
increasing the wavelength  while the
eftective mode area increases as shown in

Fig.3.a and Fip.3.c respectively.

Then we considered the inner ring
of the PCT has circular holes while the
other ring has elliptical holes. The hole
radius in the tirst ring was kept constant at
0.6 um while varying a and b of the
elliptical holes in the outer ring. If b
increnses while o is suil constant, it s
noted that there is no noticeable change in
the etfective index as shown in Fig.5.a.
However. at [long wavelength the
dispersion incrcascs while the cffective
mode area decreases as shown in Fig.5.b
and Fig.5.c  The zero dispersion
wavelength is not affected in this case.
This ensures that the geometry of the
holes in the first ring has the great effect
on the effective index of the fundamenta!
mode. So if an external pressure is
exposed to PCF with circular holes and it
deforms the holes in the second ring only

into elliptic ones, then this PCF can be

used as pressure sensor only at long

wavelength. One can predict the pressure
from the dispersion and the effective mode
area curves only at long wavelength and
no information can be expected in this
case from the effective index curves. The
above simulation was repeated with
varying a and b of the elliptical holes of
the outer ring but having the same area of
the circular holes (that
meansaxb =(0.6)* ), No significant change
was obtained in the effective index.
dispersion or in the effective mode area
when changing the parameters of the outer
elliptical holes when they have the same

arca of the first ¢ircular holes.

Keeping the area of the low index
core constant, comparison between low
index circular and clliptical core was
made. Consider the holes of the two rings
of the PCF are elliptical (a=0.6 um,
b=0.4 um) and low index core with
a’»b'=(0.3Y um”. Fig.6.a shows that
there is also slight difference between the
effective index of the low index circular
and elliptical core when they have the
same area. The dispersion and the
effective mode area are shown in Fig.6.b,
Fig.6.c respectively. The same results are

obtained when the holes of the two rings
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of the PCI are circular. It may be noted 1.8 pm  with dispersion 01,288
from dispersion curves at ps/nm.km. So zero and flat dispersion can
a'= 0.4 pmand b'= 0.225 um that the be achicved by changing the geometrical
dispersion curve is approximately flat in parameters of the elliptical low index core
the wavelength range from 1.3 pm 10 PCF with elliptical holes
1.45T — - ~
1.45} i .
e g -
b @ ‘
v 1434 \M b
o
S &
L
Z 1421 Hale pitech = 2 um @-'lﬁl ]
H a=06um Na
E 141 \E\@
——b=04um '
14} |~—b=05um B,
[0 b=06um B
1.39¢ © b=07um
* b=08um

1_38,. = o I EE e ¥ 1 i
5 08 1 1.2 1.4 16 1.8 2
Wavelength{um)
Fig.5.a0 Variaton ol ¢ffective index ol the fundamental mode of two-ring PCI¥ with wavelength with

b ot the ¢lliptic holes in the second ring as a parameter while keeping (a = 0.6 pm). circular holes
radius in the first ring (r = 0.6 pm) and (A =2 pm } consiants

+ 150 T - — v —

100}

£

" i piteh = 7 urm |
a= 06 um

n
=)

b=0.4um ]
——b=05um
——b=06um|]

Dispersion [psinm-kmj
o

-100
1

15053 i 12 14 16 18 2

Wavelength{um)

Fig.5.b Variation of dispersion of the fundamental mode of two-ring PCF with wavelength with b of
the elliptic holes in the second ring as a parameler while keeping {a = 0.6 pm). circular holes radius
ins the first ring (r = 0.6 um) and (A =2 ym ) constants
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Effactive Area {umzj

B
P

3.

S.Sl

S

o
T

4

Hole pltch = 2 um
a=06 um

—m— b =05 um
-+ ~b®06um
| b=07 um
l"‘"—bto‘ﬂum

o
n
ol
By
&
3

36

12 14 16 18 2
Wavelength{um)

P13

Fig.5.c Variation of effective arca of the fundamental mode of two-ring PCF with wavelength with
b of the elliptic holes in the second ring as a parameter while keeping (a = 0.6 um), circular holes
radius in the first ring {r = 0.6 pm) and (A =2 um) constants

Effective Index

1'38.6

= eS|
---------- a=b=03um

ar 040 um, b=0225 um
~* a=045um. b=£€{um

Hotde pitch =2 um

08

12 14 16 18 2
wWavelsngth{um)

Fig.6.a Variation of effective index of the fundamental mode with wavelength with a and b of the
central hole as parameters but having the same eHiptical central hole area. The surrounding holes

are elliptical.

Dizpersion [psinm-+m]

2of—--—-

o]

-20

<40

Haole pltch= 2 um

a=b=0.J um

j—w—a=040um, b=0225 um

| —*—a=0.45 um. b=0.20 um
I

—

12 14 16 18
Wayelengthium]

Fig.6.b Variation ol dispersion of the fundamental mode with wavetength with a and b of the central
hole as parameters but having the same elliptical central hole area. The surrounding holes are

elliptical.
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20, . -

Hole pitch = 2 um

gl ~a®b=03um
——a=0.40um. b= 0225 um
~—4—a=(45um.b =020 um

Effsctive arsa fum®)

T 1

14 16 18 2

Wavalength{umj

Fig.6.c Variation of effective area of the fundamental mode with wavelength with a and b of the
central hole as parameters but having the same elliptical central hole area. The surrounding holes

are elliptical.

4-Conclusion

The IF'V-FDM has been applied to
perform modal analysis of dilterent PCFs
structures  with  c¢ircular  and  elliptical
holes. The effects of the geometrical
parameters of the holes on the modal
properties. such as the etlective index.
dispersion and the effective mode area are
studied. The possibility of tailoring 1he
PCF slructlure, to achieve zero dispersion
at the desired wavelength has been also
studied. Flat dispersion with D= 0+[.288
ps/nm.km over the wavelength range from
1.3 um to 1.8 pum has been reported. So
with further optimization of the structure
paramclers.  these  dispersions can be
reduced still  further. Il an external

pressure is exposed to PCF with circular

holes and all the holes are deformed into
elliptical ones. this PCF can be used as
pressure sensor. Pressure sensing can be
obtained from effective index. dispersion
and effective mode area curves. However.,
il the deformation occurs in the ouler
holes only, the pressure sensing can be
obtained only from dispersion and the
elfective mode area curves at longer
wavelength. No  information can  be
cxpected in this case from the effective

index curves.
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