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BEAM PROPAGATION METHOD BASED ON FAST FOURIER
TRANSFORM AND FINITE DIFFERENCE SCHEMES
AND ITS APPLICATION TO OPTICAL DIFFRACTION GRATING
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Abstract—Accurate modeling of photonic devices is essential for the development ol new
higher performance optical components required by current and future large or wide
bandwidth communication systems. This paper introduces scveral key lechnigues for such
modeling, many of which are used in commercial design tools. These include several
techniques of the beam propagation methods (BPM), such as fast Fourier transform ( FFT-
BPM), wide angle fast Fourier transform { WAFFT-BPM), scalar finite difference (FD-BPM),
scalar wide angle finite difference beam propagation method (WAFD-BPM), Generalized
Douglas finite difference (GDFD-BPM), and full vectorial finite difference beam propagation
method (FVFD-BPM). The numerical simulations are applied 1o a real optical diffraction
grating fabricated by a double~ion exchange technique.

Key words —Beam propagation method (BPM), fast Fourier transform { FFT-BPM), the
finite-difference (FD-BPM) and full vecterial finite-difference beam propagation method
(FVFD-BPM).

1. INTRODUCTION
THE accurate analysis, design and

propagation in guided-wave optoelectronic and

optimization of guided-wave structures are
essential for the development of integrated
photonic devices, Of all the methods used to
simulate guided-wave propagation in these
devices, the beam propagation method
(BPM) has been one of the most popular
approaches used in the modeling and
simulation of electromagnetic wave

fiber-optic devices [1-3]. In this paper, some of
the important BPM methods wiil be discussed.
A decided shortcoming of the various
conventional beam propagation methods is that
they only solve the scalar wave equations under
paraxial approximation and hence apply only to
simulation of scalar wave propagation along
waveguide axis in weakly guiding structures [4-
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8]. Several numerical algorithms 10 treat
the vectorial wave propagation have been
reported recently [9-11]. The VBPM’s are
capablec of simulating polarized or even
hybrid wave propagation in strongly
guiding structures. One of the shoricomings
of the current VBPM’s is that the paraxial
approximation is stull assumed in the
governing equations and only waves
propagating close 1o the waveguide axis
may be accurately predicted. In the strongly
guided structures, guided modes may be
formed by bouncing waves propagating at
large angles with the waveguide axis. Cven
for weakly guided structures, radialion
caused by longitudinal index perturbations
may occur at Jarge angles of the waveguide
axis. Furthermore, a reference refractive
index must be assumed in ail the paraxial
(scalar and vector) propagating algorithms.
The choice of the reference index is critical
for the accuracy of the numerical solutions.
Although an optimum reference index may
be obtained by a modal calculation [11], to
determine the optimum refractive index in
practice is cumbersome and difficult in
practical applications. BPM

L

Scalar-B3PM

strongly relies on the specific FD formulas used.
II. BEAM PROPAGATION
METHOD CONCEPTS

A. Overview

In this section the concepl and capabilities of the
beam propagation meihod ( BPM )[1-8] are
reviewed, The BPM is the most widely used
propagation lechnique for modeling integrated
and fiber-optic photonic devices, and most
commercial software for such modeling is based
on it. There are several reasons for the
popularity of BPM; perhaps the most significant
being that it is conceplually straightforward,
allowing rapid implementation of the basic
technigue. This conceptual simplicity also
benefits the user of a BPM-based modeling tool
as well as the implementer, since an
understanding of the results and proper usage of
the foo} can be rcadily grasped by a nonexpert in
numerical methods. In addition 1o its relative
simplicity, the BPM is gencrally a very efficient
method and has (he characteristic that its
computational complexity can, in most cases, be
optimal, that is to say, the computational

—

[Vcclor-BPM

Wide-angle

Paraxial
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Fig. 1. Diffcrent Beam Propagation Mcthods

The finite-difference (FD) full-vectorial
beam propagation method (FVBPM) is
widely used for numerical simulation of
optical waveguides [12—-14]. High numerical
accuracy, which is essential for an FVBPM
to obtain good stability and convergence
behavior for structure modes computation,

Wide-angle Paraxial ‘

b

Wide-angle

effort is directly proportional to the number of
orid points used in the numerical simulation.
Another characteristic of BPM is that the
approach is readily applied to complex
geomeiries without having to develop
specialized versions of the mcthod. Furthermore,
the approach automatically includes the effects
of both guided and radiating ficlds as well as
mode coupling and conversion. Last, the BPM
technique is very flexible and extensible,
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allowing inclusion of most effects of
interest (e.g., polarization, nonlinearities) by
extensions of the basic method that fit
within the same overall framework [15].

A beam propagation method (BPM} is,
as its name suggests, a method used to
simulate the propagation of an optica! beam
excitation along a waveguiding structure.
Various kinds of BPMSs, such as fast Fourier
transformation (FFT-BPM) [1-2] and the
finite difference (FD-BPM) [3-14] have
been devcloped. The FFF-BPM and FD-
BPM will be discussed here because the
original method uses (FFT-BPM) [I-2]
whereas the more recent finite difference
BPM (FD-BPM) is found to be more
efficient and stable when compared to the
FFT-BPM [7-8].

A basic assumption of the BPM methods is
that the index variation in the propagation
direction is small and so may be neglected
in the analysis. This effectively eliminates
reflected waves from the formulation. This
approximation gives two coupled equations
for the transverse field components of the
propagating wave. The E-formulation,
transverse ¢lectric field (TE) and M-
formulation transverse magnetic field (TM).
BPM is based on frequency domain
approach and is divided into two parts
according to the wave  equalion
{(polarization), the first is the Scalar BPM
(no polarization), and the second is the
Vector BPM (polarization). Each part is
divided into two subsections according to
the angle of plane waves travelling in the
propagation direction, the paraxial (small
angle, Parabolic, or Fresnel) and wide angle
(Elliptic) for Scalar BPM and vector BPM.

Also vecter BPM is divided into two sub
items according to the coupling terms
modes, When ignoring the coupling terms
the Vector BPM is called semi vectorial
BPM but when consider it the Vector BPM
is called full vectorial BPM as shown in

Fig (1).

B- Paraxial Scalar BPM

The BPM is essentially a particular
approach for approximating the exact wave
equation for monochromatic waves, and solving
the resulting equations numerically. In this
section, the basic approach is illustrated by
formulating the problem under the tesirictions
of a scalar field (i.e., neglecting polarization
effects) and paraxiality (i.e., propagation
restricted to a narrow range of angles).
Subsequent sections will describe how these
limitations may be removed. BPM) 1s based on
Maxwell’s equations [13] and the scalar wave
equation for the propagating beam problem is
deduced as [16]

2 ~2 2
%+2;ﬁ%+%+%+u?—p’z)u=0, (1
where & *= k ¢'n?, /}2= k o'ny’ and k is known
as the wave- number. In free space, kp= 2a/ ).
n{x,y) is the refractive index distribution of
waveguide structure, and n, the reference
refractive index to be appropriately chosen.

At this point, the above cquation is completely
equivalent 1o the exact Helmholtz equation [17].
except that it is expressed in terms of u. It is
now assumed that the variation of u with z is
sufficiently slow so that the first tcrm  of u
above can be neglecled with respect to the
second; this is the familiar slowly varying
envelope approximation, and in this context it is
also referred to as the paraxial or parabolic
approximation. With this assumption and after
slight rearrangement, the equation (1) reduces to

o . 2 2
R A G LT I ¢y
oz 2B o
This is the basic BPM equation in three
dimensions (3-D). Simplification to two
dimensions (2-D)} is obtained by omitting any
dependence on y. Given an inpul field u
(x,y,z=0), the above cqualion delermines the
evolution of the field in the space z > 0 . It is
important to recognize what has been gained
and lost in the above approach. First, the
factoring of the rapid phase variation allows the
slowly varying field to be represented
numerically on a longitudinal grid (i.e., along 2 )
that can be much coarser than the wavelength
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for many problems, contributing in part to
the efficiency of the technique. Second. the
elimination of the sccond derivative term in
z reduces the problem from a second-order
boundary value problem requiring iteration
or eigenvalue analysis, to a first-order initial
value problem that can be solved by simple
“integration” of the above equation along
the propagation direction. This lalter paint is
also a major factor in delermining the
efficiency of BPM, implying a ftime
reduction by a factor of at least of the order
of (the number of longitudinal grid points)
compared to full numerical solution of the
Helmboltz equation. The above benefits
have not come without a price. The slowly
varying envelope ~approximation limits
consideration to fields that propagate
primarily along the axis (i.c., paraxiality)
and also places restrictions on the index
contrast (imore precisely, the rate of change
of index with z, which is a combination of
index contrast and propagation angle). In
addition, fields that have a complicated
superposition of phase variation, such those
existing in multimode devices such as
multimode-interference (MM1I’s), may not
be accurately modeled if the phase variation
is critical to device behavior. A second key
issue beyond the above restrictions on the
variation of u is that the elimination of the
second derivative also eliminates the
possibility for backward traveling wave
solutions; thus devices for which reflection

is significant will not be accurately modeled.

In the following section the numerical
solution of the basic BPM equation
discussed above is considered.

B-1- Numerical Solutions and
Boundary Conditions

Equation { 2 ) is a parabolic partial
differential equation that can be “integrated”
forward in z by a number of standard
numerical techniques. Most early BPM’s
employed a technique known as the split-
step Fourier method [1]. Later work
demonstrated that for most problems of
interest in integrated optics, an implicit

finite-difference approach based on the well-
known Crank-Nicholson (CN)scheme was
superior [4-8]. This approach and its derivatives
have become the standard; thus it is adopted
here. It is frequently denoted FD-BPM in the
literature, but will be referred to in the following
as simply BPM. To create a practical solver we
also have to consider the effects of the
simulation boundaries on the simulation
accuracy. Basic BPM and Mode Solver
boundary conditions set the field just outside the
simulation area 1o zero, simulating a perfectly
conducting metal box. The energy arriving at
the boundanies can be absorbed or otherwise
removed to avoid reflected light interfering with
the simulation. The popular method s
considered in this work, the Transparent
Boundary Condition [18-22].

The numerical simulations are applied to
diffraction planar grating waveguide [23] as
shown in Fig. (2). the measured values of the
grating of the elfective refractive index of the
guided wave mode(n, and ne) have
done with a He-Ne lascr { 4 =0.6328) through
prism couplers are cqual 10 i = 1.512689, n.;
= 1.513739 (he periodicity of the grating is
( A=10 zzm ) and the incident angle of the
optical wavelenglh as a Bragg angle which is
given by

0, = sin"[ A ] 0,(4,) =1.1985085°".
n, A

rating

Figure 2. Phase diffraction grating

A Gaussian profile whose full width at half
maximum is w,=10 x m is used as the injlial
field profile ‘I{,(.\',,z,,):cxp(—x,:/u;,z) . The
computational window is 150 g m for all the
simulations. For all methods the accuracy of the
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resulls depend on the number of grid points
N in the transverse, i.e., X direction, and (he
size of the propagation steps, A z in the
direction of propagation, i.¢., in z-direction.
In all methods N=128, Az=] um and the
propagation interaction length is 474 um.
B-1-1 Numerical Solution using fast
Fourier transform (FFT-BPM)

In the beam propagation method one
propagates an inpul field u(x,zg) over a
small distance Az to obtain the field at
7t Az, [8],[24-25] which is written as

u(x, z, + Az) = W(x, z, + Az)exp(l) 3
The phase correction [ is given by

k! —)82

28

and 1s evaluated at (x,zo+ Az). The function
¥ osatisfies  2ipV. +W_ =0 and s
propagated by using a FFT as follows. If
W,(z) denotes the discrete [ourier

transform (DFT) of ¥ (x,2), we have
M2

Y(x,z)=— W (Dexplikx)  (5)

H=-MN {2

where &, = 2T1a/(NAx)

I'=

Az, 4

2

Wo(z,+ Az) =V (2, )exp(—i % Azy  {0)

where e computational domain in x, say,
{ a,b ) has been discretized into N ( a power
of 2 )} equal subdivisions, so that
Ar={b—a}/¥ and x=a+i A x for i=1,N.
Note that, although there are N+1 discrele
values ‘P{x,,z), the DFT is applied to only
N of them ( say ,i=],N )and the periodicily
of the DIT implies that ¥, =¥, . In

connection with this periodicity, note that
built into the typical DFT representation
chosen above in the fact that u satisfics
periodic boundary conditions. Other choices
are possible.

“In summary, the basic propagation step
in the BPM consists of applying Eqn. (3}
and (4), where ‘¥(x z, + Az}is oblained by

t- performing a FI'T on “W{xz))=u(x,z) 0
obtain't,{(z,).

2- Computing ‘¥ (z, + Az) from Cqn. (6).

3- performing an inverse FFT on ‘P (z, + Az) to
obtain ‘¥(xz,+Az) . This the basic siep is

applied repeatedly to obtain the field at any
finite propagation distance. The accuracy of the
method of course depends on the smaliness of
the step size Az and the grid size Ax as well as
on the size of computation domain.

Propagation direction z (um)

(a)  Transversc direction x { s m)

Beam intensity

! j E U kY

] s I 50
(b} Transverse direction x (4 m)
Fig. (3) A grating BPM sclution using FFT
(a) Field profile through 474 & m of the grating
(b) Qutput beam intensity of 474 « m of the grating.
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The simulation resulés arc shown in Fig. (3-
a,b) for a beam intensily at interaction
fength 474 » m. In Dg. (3-a) the light
propagale in the planar diffraction graling
indicates only the zero’s and first orders
harmonic due to the incident angle of the
optical wavelength as a DBragg angle. The
simulation result agree with (heoretical
analysis and the grating device [23] is an
excellent integrated optics for light
propagation and diffracted.

B-1-2 - Numerical solution using
finite difference (FD-BPM)

In the finite-difference approach, the ficld in
the transverse { x,y ) planc 1s represenlcd
only at discrete points on a grid, and al
discrele planes along the longitudinal or
propagation direction ( z }7]. Given the
discretized field at one plane, the goal is to
derive numerical equations that determine
the field at the next plane. This elementary
propagation step is then repeated to
determine the field throughout the struclure.
For simplicity, the approach is illusirated for
a scalar field in 2-D (x,z ). Let u," denote (he
field at ftronsverse grid point 1 and
longiudinal plane n , and assume that the
grid poinls and plancs arc equally spaced by
A x and A z apart, respectively, In the
Crank-Nicholson method (CN}, Eqn. (2} is
represented at the mid plane between the
known plane and the unknown planc as
follows: '

I
g a%u
= (g k- pP) 7
oz 20 ar
utrtl _"’_n
6‘. -

L

22y i
Here 5* represents the standard second
order difference operat &u, =u,_, ~2u, +u,,,
and Z,unn =2,+2A2/2 . The above equation

can be rearranged jnto the form of a
standard tridiagonal matrix equation for the

Ahmed Shaban Samra & Bedeer Bedeer Yousif
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unknown field &, in terms  of known

guantities, resulting in

—{mi_IHH +£'mj”+] —(mHI”H =uu;-” +cnf.” +n.-.ff,” (9)
where
Az A Azlgz 2
a= ,  b=— ——(nlz+&)-n")+2jkn
e 5 Berl-n )Lk
Az Az
and ¢= e + ?&,1(”.2(2) -, ) +2jkn,

These results in a tridiagonal system of linear
equations, which can be solved very efficiently
(17].

Propagation direction z (um)

Beam intensity

us-

(L) Transverse direction x { x# m)
Fig. (4) A grating BPM solution using FD

(2) Field profile through 474 um of the grating
{b) Output beam intensity of 474 um of the grating.

The solution to this system of equations can be
also shown to be stable. The simulation results
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are shown in fig. (4-a,b) tor a beam
intensily at interaction tength 474 5 m.

B-1-3- Seolution using generalized
Douglas finite difference (GDFD-
BPM)

We first summarize the GDFD
scheme in a two-dimensional problem [31].
The Fresnel equation for the propagating
beam problem is expressed as

a_u__ 2
> _2/3( + (k% = g2 (10)

The philosophy behind the Douglas scheme
is to eliminate the truncation error terin of
the order A > where A is the transverse
sampling width. When the truncation error
is included, by Taylor's series expansion the
second derivative of function u with respect
to x is expressed as

0%u a s2u 1 9%
In the conventional CN scheme, only
the first term on the right-hand side of (11)

is evaluated, so that the truncation error is
O(a xz).To reduce the truncation error, we

substitute (10) into (11) ;replacing 8"u/ dx*
With 8% (21! 8z —(k* = B u)! Axt + O(Ax)?
Then, the [ollowing difference equation can
be derived:

2 f
= TG + F @B +

(2:/3 ),,_1 ((k2 ﬁz)cr),+1——(k2 B

Al+ont  an

—1—2~«k -5’ I RRTC COMMN(EY

We now introduce the z differencing and
get
/

2ig il =l yaigrd -l 2|
12 Az i} Az 12 Az

ul
Ui =

@Rt
_Z(_Ar)2_+-2z[(vu)f+] + (W)Hl ]

5

#1000, 001+ l0a0 ]+ T

O(az)? +O(Ax) ' (13)
where v = ,-’f"z(r.*2 —n”z).As a result, we obtain

the following high accuracy six-point scheme:
[+ 1 £2 Y ET R £ G FY
+ R R
i :—] 4, i RIS
{

: uf + u!+{ ul (14}
L S R A R A5

Propagation direction z (um)

—
£
Ry

Beam intensity

b) Transverse direction x { 4 m)
Fig. (5) A grating BI'M solution using GDFD
(a) Field profile through 474 um of the grating .
{b) Output beam intensity of 474 1 m of the grating.

The calculation proceeds as the finite difference
method and the simulation results are shown in
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fig. (5) for a beam intensity at intcraction
length 474 um.

C- Scalar Wide Angle BPM

The paraxiality restriction on the BPM, as
well as the related resirictions on index-
contrast and multimode propagation noted
earlier, can be relaxed through the usc of
extensions of BPM that have been referred
to as wide-angle BPM [27-31]. The
essential idea behind the various approaches
is to reduce the paraxial limitations by
incorporating the effect of the term that was
neglected in the derivalion ol the basic BPM.
The diflcrent approaches vary in the method
and degree of approximation by which they
accomplish  this, The most popular
formulation is referred to as the multistep
Padé-based wide-angle technique [ 29 ]
[31], and is summarized below.

A simple approach (or deriving a wide-angle
BPM cquation is to consider the Helmholiz
wave equation wrilten as [25]

q . )
I, B VI+ Dy (x.y,2) =0, (13)
2 2
e g

A x2 6y2

where [ = 3
B

C-1- Numerical solution using wide
angle FIFT-BPM

A fast Fourler transform approximation
is applied to the z derivative operator in (15)
using \W,(zp + Az) =

W, (zo)expli(f - ,6?+~2—+ 5+ (k2 - p1)az)
oyl

a2 62 (16)

P L]
Az ne B
= Wy (zp)exp[- —
B+ o 1 —=) b
x“  Qy<

Ahmed Shaban Samra & Bedecr Bedeer Yousif

a2 92
2_ g2 al. o
x cxp{~ J————{k A7) pr[—jﬁ‘; o L
20 2 2 62 a2 172
B2+ 24 V2 p
o 01

This 1s a wide angle formulation , so the
operator for the propagation over Az/2 in the
I'resnel approximation corresponds to that in the
wide angle formulation as follows:

¥ 1 2 -]
h e EE O
expl- J——i“—ﬁ—‘lﬁﬁpl Y B ]
w’+;+@,}'“+ﬂ
[EFresnel approximation ] <> [ wide angle
formulation].

Propagation direction z (um)

) -] [
(a) Transverse direction x { ;e m)
R - + —
LR
- ;
|
- |
>, i
'G LA |!]
=
) L
5 , I
- LLE |
=) 1
[y e
&3 | |
m |
Bz ! I'. i I:I.
;) = e L]

(b)  Transverse direction x (z m)
Fig. (6) A grating BI"M solution using wide angle
FFT
(a)Field profile through 474 4 m of the grating

(b) Output beam intensity of 474 4 m of the grating.
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The calculation procedures for the
beam propagation based on ihe wide-angle
formulation are exactly the same as those
for the beam propagation based on the
Fresnel approximation. The simulation
results are shown in Fig. (0) for a beam
intensity at interaction length 474 4 m.

C-2-Numerical solution using wide
angle FD-BPM

A finite difference approximation is applied
to the z derivative operator in {15} using:

[~V Dy, 24 82) =

faN

[+ (=) jB1 -V Dl (x,,2) (18)

The Padé expansion of the square root
operator is [32]:

M

wk
Where A y 0g !
I+! =1+ ¥ e
= "‘i’
ety
2 ke km
=—sif(—) and 5, =cos
o (2n+l) o (2r1+l)

Substituting (18) into (15) and Taking the
first order Padé cxpansion and substituting
in the cocflicients arc get the Padé (1,1)

wide angle scheme:
Fa

[4+(1+28zaj ) Y (x,p,z+Az) =

[4+(-282(1-)j D) (v, 3,2) - (19)

The ; operator is not raised to a higher
power in the Padé (1, 1) scheme which

cffectively means that a higher order expansion

of i . ¢ is achieved over the paraxial case with
negligible extra computational effort. Higher
order Padé schemes are derived by further
expanding the expressions in equation (18). This

leads to higher powers in 4 which if
implemented  directly would create large
bandwidth matrices which are cumbersome to
solve. The solution is to express (18) as a
product of operators. In summary, the solution
of wide-angle scalar equation can be obtained
from [28-31].

dy N, (P)

5 =/ D" (20)

s

where D= ag, p=1 . Here N,, and D, are
z

polynomials in the operator p and {(m,n) s the
order of the approximation. Table | shows
several common approximants. When (20} is
employed, larger angles, higher index contrast,
and more complex mode interference can be
analyzed in both guided wave and free space
problems as the Padé order(m,n ) is increased
[27-29]). Guidelines for using the lechnique and
a discussion of the complex interretationships
between waveguide angle, index contrast, Padé
order, reference wave number and  grid
paramelers arc discussed in [25],[29]. The
simulation results are shown in Fig. (7) for a
beam intensity al interaction fength 474 4 m.

Padé Order (im,n) Nm Dn
(1,0) P2 1
(1,1 P2 1+P/4
(2,1) P/2+ P/ 14D/2
(2,2) P/2+P%4 1+3P/4+ PY16
(3,2) P/243P%/8+P /32 I+P+ 3P%16
(3,3) P/2+P72+3P7/32 1+5P/4+ 3P%/8+DP/64
(4,3) P/2+5P%/8+3P/16+P"/128 1+3P/2+5P*/8+P°/ 16
4,4) P/2+3P%/4-+5P/16+PY/32 [+7P/4+]5P%16+5P*/32+P*/256

Table I shows several common Padé approximants
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e 1 e

Propagation direction z (um)

(a)
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18 —
14 r!
|
" I
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§ 13 ! | ]
E o8 [f
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m o4 | |
n i
0z “ J"I i i
AR
uﬂ 50 o 150
(b Transverse direction x (s m)

Fig. (7) A grating BPM solufion using
wide angle FD (a) Ficld profile through 474
um of the grating (b) Quiput beam intensity of
474 g 1n of the grating.

D- Paraxial Vector BPM

Polarization cffccts can be included in the
BPM by recognizing that the electric field is
a vector, and starting the derivation from the
vector wave equation rather than the scalar
Helmholiz equation [32-33]. In one
approach, the equations arc formulated in
terms of the transverse components of the
field ( Ex and Ey ), and result in the
following set of coupled equations for the
corresponding slowly varying fields (u, and
uy)[34-35]

o,
. = A+ Ay, (21)
on
——=dAu + A, (22)
0z

The Aj are complex differential operators given
by

i 8
A, = =27 &x[__(” ", )]+5y—u (k=) (23-a)
Aty =E{;§{§- ¢, ay[-——a(u )+ (6 - ) (23-b)
. 2
At = ﬁ{%[-——(n i )]~ 6x }and

A, = — _('?_[ 6 )]——u (23 ©)
20 ox 6 NGy

The operators Ay, and Ay account for
polarization dependence due to different
boundary conditions at interfaces and describe
such effects as different propagation constants,
ficld shapes, bend loss, ¢lc., for TE and TM
fields. The off-diagonal terms involving Ay, and
Ayx account for polarization coupling and hybrid
modes due to geometric cffects, such as the
influence of corners or sloping walls in the
cross-scctional structure (effects due to material
anmisotropy arc considered below).

The above equations are generally referred to
as describing a f(ull-vectorial BPM. The
simplification Ay, = Ay =0 gives the important
semi-vectorial approximation. In two-dimension
analysis, the semi-vectorial approximation is
cquivalent 10 the full veclorial. In this case the
transverse  field components are decoupled,
simplifying the problem considerably while
relaining what are usuvally the most significant
polarization cffects. Unless a structure is
specifically designed to induce coupling, the
clfect of the off-diagonal terms is extremely weak
and the semi-vectorial approximation is an
excellent one. The numerical method used to
solve the vector BPM is the finite difference
method but Fourier transform has the following
disadvantages [25] due to the nature of FFT: (1)
it requires a long computation time, (2) the
discretization widths in the lateral directions must
be uniform, (3) the simple transparent boundary
condition cannot be used at the analysis
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boundaries, (4) very discretization widths
cannot be used in the lateral directions, {5) the
polarization cannot bc treated, (6) it is
inadequate for large refractive index reference
optical waveguides, (7) the number of
sampling points must be a power of 2, (8) the
propagation step has to be small.

D-1- Numerical solution using finite

difference paraxial vector-BPM

Equation (22) can be solved by using the
fintte-difference method. In the finite-
difference solutions, the real continuous space
is discretized into a lattice structure defined in
the computation region. The field at the lattice
pointof x=mAx,y=ndAyandz=1Azis
represented by u'(m,n) . For the transverse

derivatives, a cenirat difference scheme is
used which attains the second-order accuracy
in space. Since is simply given by the
transverse derivatives, a central difference
scheme is the tangential electric fields are
conlinuous across the index interfaces, the
finite-difference approximation for &%« /&t is
simply given by
62ux B zr_rl (m,n+1)— 2ux!(m,n) + Hx! (mn-1)
QVZ é‘})2
For the derivative along the direction of the
polarization, the discontinuities of the
normal electric fields across the index
interfaces should be considered. The
standard central difference can still be
applied formally, but the field values at the
two adjacent’ poinls should be modified
according to the boundary conditions across
the possible index interfaces between lhe
lattice  points. The finite-differcnce
expression for &*w, / ax? becomes [36)
azux /
=T

a2

i

{
[2-R m+ln - R
{

T nux’ (m,n - 1) /(Ax)2

24)

nux" (m+1,n) r’(eﬁx)2 - 25

m=1,n }”xi (m, rr)f(m-)2 +
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/ 2:?2(nr+1 nh
where 7 tin =7 — ,
mIta o, (mxLnt) +n“(mnl)
/ 3 2!12(mi],n,t") (26)
mtln :12(::111,}4,1) + nz(m,n,f) ’

Making use of (30) and (31), we derive the
following finite-difference equations

el 1) i+l ." 1 {41 |'+l
Am,uut(m #) + AJ’H-}'JJ ximi+ 1) + Am 1o t(m 1) +

i+l I+l I+t 41 _
Am n+|“:[m n+l) + Amﬂ W ma- 1y =

27)

f i
Annn"x{m 3] + Annl K :[m iy + Am i, al \v{m—l A} +
AI

f
m_;ul”x(m_nd) + A

i
- I”x(m -1

] A o abz | DRI i)
where o 4 S Zﬂ {({_\,\‘)2 { Rm;l‘n =l i ] +
2
‘—'-'—*'[H nend) —H_,',}J'(”} 28"3
(&)’ (28-2)
a’T“l &Z
;’u‘:\l‘u = — |" 2 3 ;Itl‘fil = j—ak_f (zg-b)
2P(Ax) 2p(8y)
t (3 @Az, | o o
Am_n - zﬂ {{(}.\‘)2 [2 wialn Rm-l,nl"’
—— ~[atas -k (28-¢)
(ay)?
Az
o ‘J——)—ﬂ&—— , (28-d)
2p(bxy
: (l o)Az
muLl 2/3(6 )2

Propagation direction z (um)

(a) Transverse divection x (i m)



Beam intensity

(b)  Transverse direction x (2 m)
Fig. (8) A graling DBPM solution using
paraxial FYFD (a) Field profile through 474
um of the grating (b) Qutput beam intensity
of 474 u m of the graling.

The parameter a is introduced to
control the finite-difference scheme. For
instance, @ = 0.5 corresponds to the Crank-
Nicholson scheme. The choice of « may
affect the stability, the order of accuracy,
and the numerical dissipation and dispersion
of the FD-VBPM [31-32]. It can be proved
that the finite-difference scheme in (27) and
(28) is unconditionally stable for & = 0.5.
Equation (27) may be solved numerically at
each propagating step. For the 2-D problems,
following a standard lower upper
decomposition (LUD) for the tridiagonal
linear equations can be used. For the 3-D
problem, we can apply the ORTHOMIN
method [37].  The simulation results are
shown in fig. (8) for a beam intensity at
interaction length 474 4 m.

E- Numerical solution using a wide

angle vector-BPM
By utilizing the Padé recursion relation [3§]
9 ,:——_L where i=x, y wide
&2 i+ . 1 a
I+ j——,
28 0z

angle schemes of different orders may be
derived for 2D from (21} for n=l, the

following equation is obtained:
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Propagation direction z (um)

(a), Transverse direction x (z m) _

Beamn intensity

o4

g

(b) Transverse direction x (g m)
Fig. (9) A grating BPM solution using wide-
angle FVFD (a) Field profile through 474 . m
of the grating (b) Qutput beam intensily of 474
pmofthe grating.

[ +%- jdzaa ! =1 +%- jaz(~a)d, ] (29)

Note that virtually no extra computation is
required for the wide angle scheme in
comparison with the paraxial VBPM. The
simulation results arc shown in fig. (9) for a
beam intensity at interaction length 474 xm

F- Accuracy of BPMs

To assess the accuracy we calculated the beam
intensity at interaction length 474 um as a
function of the grid points in the ftransverse
direction X and step propagation A z in z
direction. These results are shown in previous
Figures. For all methods as N gets larger and
Az gets smaller, accuracy improves. For the
slowly varying index case, the accuracy of all
methods is not very sensitive to the actual N
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value as long as it is not too small. As Az
increases, however, accuracy degrades for
all methods . Accuracy of the FFT-BPM
starts to degrade at smaller A z values
compared to FD-BPMs . Apgain as A z
increases accuracy of atl methods degrades.
Degradation in the FD-BPM result is slower
than FET-BPM.

As another test on the accuracy, we
calculated the CPU time for all methods,
and the result shown in Fig. (10). Although
it is possible to get the same accuracy using
all methods, due to the need for a small
propagating step, the required computation
time effort for FFT-BPM can be drastically
higher than that of FD-BPM. To compare
the computational speed of all methods we
compared the CPU time required for the
light propagation through a distance 474
um at A=128 in different BPMs. This is the
time it takes to find the field profile away
from a known field profile and is
independent of the structure under
consideration. The number of grid points
increases, CPU time per step for all
techniques increases. The increase in FFT-
BPM is more rapid and over the &V values
constdered FD-BPM is 4 to 6 times faster
than FFT BPM,

1-Paraxial, Scalar FFT-BPM,

2- Paraxial, Scalar FD-BPM ,

3- Paraxial, Scalar GDFD-BPM,

4- Wide angle scalar FFT-BPM ,

5- Wide angle Scalar FD-BPM,

6-Paraxial, Full vector FD-BPM ,

7-Wide angle Full vector FD-BPM

Fig. (18) CPU time for the different
simulation methods.
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This is a direct indication of the fact that
computation time required to solve a tridiagonal
system of NV linear equations increases as N,
whereas time required 1o obtain the FFT of a
function using V grid poinis increases as V log
N. Comparison of the accuracy of both methods
shows thal one can get accurate results with
larger propagaling step sizes in FD-BPM.
Combined witl the CPU time improvement per
step, this indicates that FD-BPM can be much
more efficient than FFT-BPM. The computer
used in running a program 2.4/512 GHz and 256
MB

IV. CONCLUSIONS

In this paper, a beam propagation method
employing a {inite difference approximation is
studied in comparison with that using fast
Fourier transformation. From the study, it is
found that the computation time for the
simulation in FD-BPM is 66% times less than
that of FFT-BPM.

Furthermore, FD BPM is much more stable with
respect to propagation step size, A z, and
number of grid points N variations. For
comparable accuracy, onc necds much smaller
propagation step sizes in the FFT-BPM than the
FD-BPM. This indicates thal combined with the
CPU time improvement per step FDBPM can be
much more efficient than FIFT-BPM. As further
test on the accuracy of all methods, From
previous analysis we can conclude that our
optical diffraction grating fabricated by a
double-ion exchange (echnique is more efficient
as an opfical waveguide diffraction device and
proved to have many applications in optics.
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