Sensorless Direct Torque Control of an Induction Motor Using Fuzzy Controller

A. A. Khalil

akhalil@aat.edu

Arab academy for science & Technology & Maritime Transport

Abstract: In this paper direct torque control DTC of an induction motor is developed. A new technique for DTC based on fuzzy logic concept is proposed, where fast torque response with low ripple in the stator flux and torque of induction motor can be achieved. In comparisons with the conventional DTC simulation results clearly demonstrate a better dynamic and steady state performance with the fuzzy logic DTC. The two approaches are explained in clear details, which are designed using SIMULINK under Matlab Ver.6 software package. Also, MATLAB/FUZZY toolbox is used to implement the fuzzy logic controller. Both systems are simulated under the same conditions.

I. Introduction

variable speed AC motor drives have been continuously developed during the last decades owing to the advances in power electronics, control theory and microprocessors technology. In recent industrial development, induction motor is widely used for variable speed control system, which requires a precise and quick torque response. An improvement of the drive performance can be obtained using a new direct torque control algorithm based on the application of the space vector modulation [1-3]. The Direct Torque Control (DTC) technique has been recognized as a viable method to provide a very quick and precise response, where minimum switching frequency and hence maximum efficiency is guaranteed and fully decoupled control loops as well. Direct torque control is one of the actively researched control schemes which are based on the decoupled control of flux and torque when the exact vector of stator flux is known. The basic concept of direct torque control of induction machines is investigated in order to emphasize the effects produced by a given voltage vector on stator flux and torque variations. In DTC, the torque and stator flux are regulated to their command values by selecting the switching state which gives the proper changes in the torque and flux. There have been some DTC-based strategies, e.g. voltage-vector selection using switching table, direct self-control, and space-vector modulation [4 - 6]. Among them, the voltage-vector selection strategy using a switching table is widely researched and commercialized, because it is very simple in concept and easy to be implemented. The proper voltage vector selection is based on the error in electromagnetic torque, error in stator flux and the position of the stator flux vector. In the conventional DTC scheme the system makes no difference between a very small and relatively large error of torque and/or flux. The switching states chosen for the large error that occurs during the startup or during a step change in torque command or even flux command are the same that have been chosen for the fine control during normal operation. This may cause a lightly slower responses during the start-up and during a step change in electric torque or stator flux. This was the reason of attempting to propose a new approach for direct torque control (DTC) based on "if the range in which the torque error exists and the range in which the flux error exists are considered when choosing the switching state, the system response can be improved using different error levels". A type of controller that allows the control rules to be adjusted according to the value of the inputs is a fuzzy logic controller. Fuzzy logic controller is one of the more efficient AI (Artificial Intelligence) techniques used in control applications because it is a controller that converts a set of linguistic rules based on expert knowledge into an automatic control strategy [7-14]. So, fuzzy logic controller is used for the implementation of direct torque control of an induction motor in a way of trying to improve its slow response.

II. Strategy of Direct Torque Control

The basic concept of DTC is to control the stator flux and torque directly by using the effective voltage vector generated from voltage source 6-step inverter. This method was offered by Takahashi in 1985 [15]. The idea is that motor flux and torque are used as primary control variables, which is contrary to the way in which the traditional AC drives control input frequency and voltage. In DTC algorithm, a direct hysteresis stator flux and electromagnetic torque control that trigger directly one voltage vector among the six effective voltage vectors (Ve, V1, V2, V3, V4, V5), and two null voltage vectors (V6, V0), in order to keep stator flux and torque within pre-specified error tolerance bands as shown in figure (1).
The proper selection of the inverter switching states is made so that the error between estimated stator flux and the stator flux command signal must be within the pre-specified hysteresis band, where

$$||A|| - \delta||(A)\|/2 \leq ||A|| + \delta||(A)||/2$$ \hspace{1cm} (1)

The selection of the inverter switching states depends not only on the error of the flux amplitude but also on the direction of stator flux. The stator flux vector position is determined by equation (2)

$$\theta = (2\pi - 3\pi N)/6 \leq \theta(N) \leq (2\pi - 1\pi)/6$$ \hspace{1cm} (2)

For example, if $||\lambda||$ is in the region of sector 2, as shown in figure (2). For clockwise direction of rotation, when $||\lambda||$ reaches the upper limit of equation (1), the voltage vector V_2 must be selected. When $||\lambda||$ reaches the lower
limit of equation (1), \(V_s \) must be selected. On the other hand, for counterclockwise direction of rotation, when \(|A_1| \) reaches the upper limit for the same sector, \(V_s \) must be selected. When \(|A_1| \) reaches the lower limit of equation (1), \(V_s \) must be selected. Thus, two dimensional hysteresis control of \((A_1) \) makes possible of a constant \(|A_1| \) by selecting the appropriate voltage vectors.

As a result, the flux vector can be freely driven in steps through a hysteresis controller, so that the error between \((T_s) \) and \((T_s^*) \) must be within a pre-specified hysteresis band \(\{\alpha T_s\} \) which is presented as:

\[
T_s^* - \alpha T_s \leq T_s \leq T_s^* + \alpha T_s
\]

(3)

where \(\lambda \) rotates in the forward direction.

As shown in figure (3), for motoring case (i.e. the flux space phasor rotates in counterclockwise direction), when \((T_s) \) reaches \(T_s^* - \alpha T_s \), one of the accelerating voltage vectors must be applied on the motor terminals to reduce the error between \((T_s) \) and \((T_s^*) \) to within \(\{\alpha T_s\} \). Likewise, in the case of braking or reverse operation (i.e. the flux space phasor rotates in clockwise direction), when \((T_s) \) reaches \(T_s^* + \alpha T_s \), one of the decelerating voltage vectors must be applied to reduce the error to be within \(\{-\alpha T_s\} \). With the proper selection of optimum voltage vectors would be realized by taking into consideration equation (1), to maintain \(\{\alpha T_s\} \) within acceptable limits. Accordingly, the constant torque control could be achieved. In general, the explanation of OTC strategy is that, the error of stator flux magnitude and the error of electromagnetic torque can be detected and digitized, respectively by simple twollevel hysteresis comparator, three-level hysteresis comparators, and the stator flux vector location passing through the six 60°-sectors, which can be obtained according to table (1).

![Figure (3) Representation of torque control using three-level hysteresis controller.](image)

<table>
<thead>
<tr>
<th>Table (1) Sign detectors (Simple comparators).</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Sign detector})</td>
</tr>
<tr>
<td>(\text{sign}(\lambda_{x+1}))</td>
</tr>
<tr>
<td>(\text{sign}(\lambda_{x-1}))</td>
</tr>
<tr>
<td>(\text{sign}(1/3\lambda_{x+1} - 1/3\lambda_{x-1}))</td>
</tr>
<tr>
<td>(\Theta_{d(x)})</td>
</tr>
</tbody>
</table>

Through the two error signals and the stator flux position a proper selection of the voltage vectors can be obtained. The optimum switching states of the inverter (s_1, s_2, s_3) can be tabulated versus the outputs of the comparators and the six 60°-sectors, as shown in figure (4) in which (δ) and (τ) signals are digitalized outputs of the comparators, and the signal of δ_m determines an indication of the stator flux vector location [11], [5], [15].

![Table](image)

Figure (4): Selection of optimum voltage vectors referred by the outputs of the comparators along the six 60°-sectors

Where:
- $\delta = 1$ for positive error of the flux magnitude, $\delta = 0$ for negative error of the flux magnitude.
- $\tau = 1$ for positive error of the torque magnitude, $\tau = 0$ for torque error within the acceptable limits.
- $\tau = -1$ for negative error of the torque magnitude.

III. Direct Torque Control Mode

A schematic diagram of an induction motor drive under DTC is shown in Figure (5). The induction motor is fed

![Diagram](image)

Figure (5): Complete illustrative diagram of an induction motor drive under direct torque control scheme (DTC).

From a three-phase inverter consisting of six fast switching devices, driven by control signals of optimum pulse selector. The dc input voltage is provided by a full bridge rectifier and LC filter. The stator flux and motor torque can easily be calculated using stator phase voltages and currents. The basic control algorithm of DTC is carried out
using two comparators to produce the error signals of stator flux and electromagnetic torque based on the comparison between the calculated values and their references. After digitalizing the error signals of the flux amplitude and motor torque, the output values of the hysteresis comparators provide flux and torque signals δ and τ, respectively; representing δ using one bit, and τ using two bits. Where $\delta=1$ for positive error and $\delta=0$ for negative error of the stator flux magnitude, also, $\tau=(0,0)$ for torque error within the acceptable limits, $\tau=(1,0)$ and $(1,1)$ for torque error above and below the acceptable limits, respectively. The flux vector position $\delta(\theta)$ is detected by three output bits. These six bits are used to access the optimum pulse selector truth table. The outputs from the truth table are used to drive the inverter switches, and the optimum voltage vector can directly be obtained.

IV. Simulation Results of Conventional DTC

Simulation was performed in order to simulate the direct torque control using SIMULINK under MATLAB Ver.6 [16]. Matlab/Simulink was used to construct the induction motor model and the strategy of DTC system. Figure (6) shows the simulation block diagram of the direct torque control of an induction motor drive system.

![Simulation block diagram of the conventional DTC.](image)

Figure (6) MATLAB/SIMULINK block diagram of the conventional DTC.

In figure (6), the reference value of the torque controller is generated by three individual input sources, as:

1. Step input reference torque
2. Square wave reference torque
3. Speed feedback loop using a PI controller

Therefore, the system simulation was carried out using the above three input reference torque signals. The parameters of the selected induction motor, referred to ABB Technical Data Sheet, are shown in Table (2) given in the appendix.

I. DTC with a Step-Input Reference Torque

The hysteresis bands for stator flux and torque controllers are set as $\Delta_{\text{hyst}}=0.01\text{Wb}$ and $T_{\text{hyst}}=1.0\text{Nm}$, respectively. The system was initially commanded by the rated stator flux as a constant reference value $[\psi_f]^{*}=1\text{Wb}$ at $t=0\text{sec}$, while the reference torque command signal was zero ($T_\tau^{*}=0\text{Nm}$). At $t=0.01\text{sec}$, a step change from zero to the rated motor torque $T_\tau^{*}=100\text{Nm}$ was applied as a constant torque command signal, while the motor has been loaded by $T_L=90\text{Nm}$ at $t=0.1\text{sec}$. The simulation results of the stator flux and motor torque are shown in Figure (7). Figure (8) shows the trajectory of the d-q axis stator flux.
2. DTC with a Square Wave Reference Torque

At $t = 0.01\text{sec.}$ up to $t = 0.1\text{sec.}$, a step change from zero to the rated motor torque $T_e^* = 100\text{N.m.}$ was applied as a constant torque command signal. At $t = 0.1\text{sec.}$ a step change in torque command signal was applied to force it to be zero $T_e^* = 0\text{N.m.}$, and this sequence is repeated. The simulation results of the stator flux and motor torque are shown in Figure(10). Figure(11) shows the trajectory of the d-q axis stator flux.
Figure (10) (a) Stator flux (\(\mathbf{\phi}_s \)) (b) Motor torque (\(T_m \))

Figure (11) Stator Flux Space Phasor during simulation.

Figure (12) Electromagnetic torque response at step change in torque command signal

Figure (12) shows the electromagnetic torque response for a step change in torque command signal (step down).

3. DTC with Speed Feedback Loop Using PI Controller
The speed control system consisting of a PI (proportional-integral) controller technique is used to get greater speed accuracy. The external speed reference signal is compared with the actual speed produced from the inverter model. The error signal is then fed to the PI controller. Thereafter, the PI controller output signal is then used as a reference input signal to the torque comparator. The PI controller gain values obtained after controller tuning are: \(K_p = 0.078 \) and \(K_i = 0.08 \). The system was initially commended by the rated stator flux as a constant reference value \(|\mathbf{\phi}_s| \) in N 8 sec., while the reference command of the speed controller was zero (\(\omega_{r} \) in rpm.)
At $t = 0.01 \text{sec}$, a step change from zero speed to motor rated speed $N_p^* = 1200 \text{r.p.m}$ was applied to the speed controller, while the motor has been loaded by $T_L = 90 \text{Nm}$. At $t = 0.1 \text{sec}$, the simulation results are presented in figures (13), (14) and (15).

![Figure (13)](image1) (a) Stator flux (λ_p) (b) Motor speed (N_p)

![Figure (14)](image2) (a) Torque command signal (T^*_c) (b) Motor torque (T)

![Figure (15)](image3) Stator flux space phasor during simulation
V. Fuzzy logic Direct Torque Control

The proposed fuzzy logic controller was designed to have three fuzzy state variables and one control variable for achieving constant torque and flux control. The first variable "e₁", which is the stator flux error signal, defined as:

\[e₁ = \frac{\lambda_{sref}}{\lambda_s} \]

(4)

The second variable "e₂", which is the motor torque error signal, defined as:

\[e₂ = T_{out} - T_r \]

(5)

The third fuzzy state variable is the stator flux vector position (θ₁), defined as:

\[\theta₁ = \tan^{-1}\left(\frac{\lambda_{qref}}{\lambda_d}\right) \]

(6)

Then, the three input variables are divided into their fuzzy segments, where the number of fuzzy segments is chosen to have maximum control with a minimum number of rules. The universe of discourse of the stator flux error is divided into three linguistic variables with triangular and trapezoidal membership functions, where N, Z, and P denotes for negative, zero, and positive value of stator flux error, respectively, as shown in figure (17-a). The universe of discourse of the motor torque error is divided into five linguistic variables with triangular and trapezoidal membership functions, where NL, NS, Z, PS, and PL denotes for negative large, negative small, Zero, positive small, and positive large value of motor torque error, respectively, as shown in figure (17-b).

For more accuracy, the universe of discourse of the stator flux vector position (θ₁) is divided into twelve fuzzy sets denoted (θ₁)₁ to (θ₁)₁₂, as shown in figure (18).
The control variable is the inverter switching state (\(\mu_i \)). In a six-step inverter, seven distinct switching states are possible. Therefore, the universe of discourse of the controller output is divided into seven fuzzy sets, with trapezoidal membership functions as shown in figure (19).

![Figure (19) Membership functions for control output](image)

The computation of stator flux position (\(\theta_s \)) can be achieved using a digital circuit, which has been designed using MATLAB/SIMULINK, as shown in figure (20):

![Figure (20) MATLAB/SIMULINK block diagram used to compute the stator flux position vector.](image)

To achieve an accurate control action, the controller has been designed using Mamdani's inference method [11], based on min-max decision. The membership functions of variables A, B, C and N are given by \(\mu_A, \mu_B, \mu_C \) and \(\mu_N \), respectively. The weighting factor (\(a_i \)) for \(i^{th} \) rule can be written as:

\[
a_i = \min(\mu_A(e_1), \mu_B(e_2), \mu_C(\theta_s))
\]

(7)

As mentioned before, the interface method was developed using Mamdani's minimum operation rule according to which the \(i^{th} \) rule leads to the control decision:

\[
\mu_M (n) = \min(a_i, \mu_M (n))
\]

(8)

Thus, the membership function (\(\mu_n \)) of the output (\(n \)) (i.e. the \(N^{th} \) rule) is point wise given by:

\[
\mu_N (n) = \max(\mu_M (n))
\]

(9)

In this case, the outputs are crisp; the Mean-Max method is used for defuzzification. By this method, the value of fuzzy output needs to be digitalized using binary-to-decimal coded converter and some of logical and relational operators, as shown in figure (21), to generate three digital logic signals, that select the proper switching states of the inverter.

![Figure (21) MATLAB/SIMULINK block diagram used to convert the crisp fuzzy output to three digital signals](image)
The rules are formulated according to the effect of each discrete voltage vector on stator flux space vector that passes over the twelve sectors, as shown in figure (22).

![Figure (22) Selection of optimum voltage vectors as the stator flux space phasor passes over the twelve sectors](image)

There are totally 180 rules [12], which are derived from the above figure, as shown in table (3) in the appendix.

VI. Simulation Results of Fuzzy DTC

A fuzzy controller that implements the direct torque control of an induction motor has been designed and simulated using FUZZY toolbox and SIMULINK under Matlab Ver.6 software package. Figure (23) shows the simulation block diagram of the fuzzy logic controller for a direct torque control of an induction motor.

![Figure (23) MATLAB/SIMULINK block diagram](image)

1. Simulation of a Fuzzy Logic DTC with a Step-Input Reference Torque

The system was initially commanded by the rated stator flux as a constant reference value $|\lambda_s^*| = 115.8$, at $t = 0$ sec., while the reference torque command signal was zero ($T_{em}^* = 0$ N.m.). At $t = 0.01$ sec., a step change from zero to the rated motor torque $T_{em}^* = 100$ N.m. was applied as a constant torque command signal, while the motor has been loaded by $T_{m} = 90$ N.m. at $t = 0.1$ sec. The simulation results are presented in figure(24), (25) and (26).
Figure (26) shows the stator flux response and motor torque response of the machine at starting.

2. Simulation of a Fuzzy Logic DTC with a Square Wave Reference Torque

At $t = 0.01\text{sec.}$, up to $t = 0.1\text{sec.}$, a step change from zero to the rated motor torque $T_m^* = 100\text{N.m.}$ was applied as a constant torque command signal. At $t = 0.1\text{sec.}$, a step change in torque command signal was applied to force it to be zero $T_m^* = 0\text{N.m.}$, and this sequence is repeated along the simulation. The simulation results are presented in figure (27), (28) and (29).
Figure (28) Stator flux space orientation during simulation
Figure (29) shows the electromagnetic torque response for a step change in torque command signal (step down).

Figure (30) Electromagnetic torque response at step change in torque command signal.

3. Simulation of a Fuzzy Logic DTC with Speed Feedback Loop Using PI Controller

The system was initially commanded by the rated stator flux as a constant reference value $\mathbf{A}_{r}^{*} = 1.5 \Phi_{h}$ at $t = 0$ sec, while the reference command of the speed controller was zero ($N_{r}^{*} = 0$ r.p.m.). At $t = 0.01$ sec., a step change from zero speed to motor rated speed $N_{r}^{*} = 1200$ r.p.m. was applied to the speed controller, while the motor has been loaded by $T_{L} = 90$ N.m. at $t = 0.1$ sec. The simulation results are presented in figure (30), (31) and (32).

(a) Stator flux (\mathbf{A}_{r}) (b) Motor speed (N_{r})
Figure (31) Torque command signal (T_e^*) and motor torque (T_e)

Figure (32) Stator flux space phasor during simulation

VII. Conclusions

The aim of this paper is to present the simulation of DTC of an IM using both of the conventional DTC and a new proposed technique for DTC based on fuzzy logic concept (F-DTC). The conventional DTC and F-DTC were designed using MATLAB/SIMULINK software package. Also, MATLAB/FUZZY INFERENC SYSTEM (FIS) software was used to implement the fuzzy controller. Both were simulated under the same conditions. The differences between them have been investigated through a computer simulator. As a conclusion from the comparative study, the comparison was focused on the following items:

- Fuzzy logic control of F-DTC can differentiate between a small and relatively large error of torque and/or flux. Subsequently, the switching state selection would be more accurate to achieve the system requirements.
- In conventional DTC, the flux space was divided into six sectors, while in fuzzy logic control it is divided into twelve sectors to avoid the borderline effect of some states during the switching states selection.
- Using fuzzy logic control, the torque response records an approximate settling time of 1.7 millisecond for step-up command signal, and 0.35 millisecond for step-down. While, using conventional DTC, the torque response records an approximate settling time of 3 millisecond for step-up command signal, and 0.6 millisecond for step-down.
- Using fuzzy logic control provides the system with minimum ripple for both torque and flux, where the peak-to-peak flux ripple is ±0.0044Nm, and the peak-to-peak torque ripple is ±0.0674Nm. While the conventional DTC have relatively large ripple, where the peak-to-peak flux ripple was ±0.039Nm, and the peak-to-peak torque ripple was ±1Nm.

Finally, the simulation results show an improvement with fuzzy controller over the conventional DTC in both flux and torque response. The steady state response for both controllers was found to be relatively the same.
VIII. Appendix

Table (3): Parameters of the specified Induction Motor

<table>
<thead>
<tr>
<th>No.</th>
<th>Definition</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rated output</td>
<td>P_n</td>
<td>18.5 KW</td>
</tr>
<tr>
<td>2</td>
<td>Rated Voltage</td>
<td>V_n</td>
<td>460 Volt</td>
</tr>
<tr>
<td>3</td>
<td>Rated Frequency</td>
<td>f_n</td>
<td>50 Hz</td>
</tr>
<tr>
<td>4</td>
<td>Rated Speed</td>
<td>n_n</td>
<td>1445 rpm</td>
</tr>
<tr>
<td>5</td>
<td>Rated Current</td>
<td>I_n</td>
<td>34.4 Amp</td>
</tr>
<tr>
<td>6</td>
<td>Nominal Torque</td>
<td>T_n</td>
<td>121 Nm</td>
</tr>
<tr>
<td>7</td>
<td>Power Factor</td>
<td>P_f</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>Moment of inertia</td>
<td>J</td>
<td>0.164 Kg-m²</td>
</tr>
<tr>
<td>9</td>
<td>Vacuum Coefficient</td>
<td>b</td>
<td>0.007402 N.m.rad/sec</td>
</tr>
<tr>
<td>10</td>
<td>Stator Resistance</td>
<td>R_s</td>
<td>0.0 Ohm</td>
</tr>
<tr>
<td>11</td>
<td>Rotor Resistance</td>
<td>R_r</td>
<td>0.13 Ohm</td>
</tr>
<tr>
<td>12</td>
<td>S-Self Resistance</td>
<td>X_s</td>
<td>0.41 Ohm</td>
</tr>
<tr>
<td>13</td>
<td>R-Self Resistance</td>
<td>X_r</td>
<td>1.42 Ohm</td>
</tr>
<tr>
<td>14</td>
<td>Interconnection R</td>
<td>X_m</td>
<td>18.5 Ohm</td>
</tr>
<tr>
<td>15</td>
<td>Number of Poles</td>
<td>p</td>
<td>4 Pole</td>
</tr>
</tbody>
</table>

Table (4): Lookup table of fuzzy rules for voltage vector selection

<table>
<thead>
<tr>
<th>Fuzzification</th>
<th>Rule 1</th>
<th>Rule 2</th>
<th>Rule 3</th>
<th>Rule 4</th>
<th>Rule 5</th>
<th>Rule 6</th>
<th>Rule 7</th>
<th>Rule 8</th>
<th>Rule 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IX. References