Full-Wave Analysis of A Line-Fed Rectangular Patch Antenna Using FDTD Method with Mur's and PML ABCs

Maher M. Abd Elrazzak, IEEE Member, A. N. Mahmoud, and H. Elmikati, IEEE Senior Member
Faculty of Eng., Mansoura Univ., El-Mansoura, Egypt.
email: maher@ieee.org

Key-words: - FDTD, Mur’s, PML, and Patch Antenna

Abstract- In this paper, the finite-difference time-domain (FDTD) method is used for the analysis of a line-fed rectangular patch antenna. This is carried out by using the Berenger perfectly matched layer (PML) as well as Mur’s first order absorbing boundary conditions (Mur’s FOC). The time domain field response, the return loss, and the input impedance of the structure are obtained. In addition, the effect of patch width and the feeder displacement are studied. The results obtained by the FDTD with PML are found to be in better agreement with the published measured data than those obtained by the FDTD with Mur’s FOC.

I-Introduction

The finite-difference time-domain (FDTD) technique is one of the most popular Maxwell’s equations solution techniques [1-3]. This technique was initially formulated by Yee [1]. It has been widely applied to various electromagnetic problems such as scattering problems [1,4], modeling of microstrip and CPW structures [3-6], and antenna analysis [7-8].

The main advantages of FDTD technique are, simplicity, ability to handle complex structures, and to obtain the response over a wide frequency band from one calculation. FDTD approach is a direct solution of Maxwell’s time dependent curl equations. The basic idea of this method is based upon volumetric sampling of unknown field distribution (E and H) within and
surrounding the structure of interest, and over a period of time. The sampling in space and time is selected to give the desired accuracy and the numerical stability of the algorithm, respectively. FDTD method is a marching in time procedure that simulates the continuous actual propagation of electromagnetic waves in a specific region. Time stepping continues until the desired late-time pulse response is observed at the field points of interest. At these points, a wide band frequency response can be obtained by Fourier transformation of the transient response. Since the simulation of the electromagnetic waves in open structures requires that the modeled region must extend to infinity, absorbing boundary conditions (ABCs) are employed at certain outer grid truncation planes to eliminate the reflections from the outgoing waves to the computational domain. These ABCs include, for example, Mur's ABCs [9], and Berenger perfectly matched layer (PML) [10-11] which are used in the present work.

The main theme of this paper is to use the FDTD method to obtain the time domain response, the return loss, and the input impedance of a microstrip patch antenna. The method is based upon employing both Mur's FOC, and perfectly matched absorber. In the next sections, a brief outline of FDTD method, Mur's FOC, and PML ABCs are presented. Next, the analysis of a line-fed rectangular patch antenna with its numerical results and concluding remarks are given.

II. Formulation of the problem

II.A Basic FDTD principles

This section presents the basic formulation of FDTD method. The actual dimensions of the microstrip patch antenna are shown in Fig. 1, where the strips and the bottom plane are perfect conductors with zero thickness. The substrate has a dielectric constant ε_r.

![Fig. 1. Line-fed rectangular patch antenna](image)

For this structure, Maxwell's equations can be written as[1].
\[\frac{\partial H}{\partial t} = -\frac{1}{\mu} \nabla \times E - \frac{\rho'}{\mu} \mathbf{H} \]
(1.1)\\
\[\frac{\partial E}{\partial t} = -\frac{1}{\varepsilon} \nabla \times H - \frac{\sigma}{\varepsilon} E \]
(1.2)

where,
\[\rho' \] is the magnetic resistivity of the medium in (\(\Omega\)/m)
\[\sigma \] is the electric conductivity of the medium in (S/m)

\[\frac{\partial [\bullet]}{\partial t} \] is the partial derivative with respect to time.

Equations (1) are approximated using the second order central difference scheme in space and time [1-3]. The orientation of the electric and magnetic field components in a unit cell of FDTD lattice is shown in Fig. 2. The position of E-and H-nodes are off in space by \(\Delta/2\) space. The difference equations of the six field components in Cartesian coordinate of equation (1) are given, for instance, in references [2] and [3]. For example, the discretized equations for \(H_z\) and \(E_x\) field components are.

\[H_z\Big|_{i,j,k}^{n+1/2} = D_z\Big|_{i,j,k}^{n+1} H_z\Big|_{i,j,k}^{n+1/2} + \]
\[\frac{D_x}{\Delta z} \left\{ E_x\Big|_{i+1/2,j,k}^{n+1/2} - E_x\Big|_{i-1/2,j,k}^{n+1/2} \right\} - \frac{E_x}{\Delta y} \left\{ E_x\Big|_{i,j+1/2,k}^{n+1/2} - E_x\Big|_{i,j-1/2,k}^{n+1/2} \right\} \]
(2.1)

\[E_x\Big|_{i,j,k}^{n+1} = C_x\Big|_{i,j,k}^{n+1} E_x\Big|_{i,j,k}^{n} + \]
\[\frac{C_z}{\Delta y} \left\{ H_z\Big|_{i,j+1/2,k}^{n+1/2} - H_z\Big|_{i,j-1/2,k}^{n+1/2} \right\} - \frac{H_z}{\Delta z} \left\{ H_z\Big|_{i+1/2,j,k}^{n+1/2} - H_z\Big|_{i-1/2,j,k}^{n+1/2} \right\} \]
(2.2)

where \(\Delta x, \Delta y, \) and \(\Delta z\) are the space steps in the x, y, and z directions, respectively. The D's and the C's are the updating electric and magnetic field components coefficients, respectively [2].

To ensure that the numerical error generated in one step does not accumulate and grow, the stability condition is applied according to Courant relation given by [2-3],

\[\Delta t \leq \frac{1}{\nu_{\text{max}}} \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2} \right)^{1/2} \]

where
\[\Delta t \] is the maximum time step that may be used.
\[\nu_{\text{max}} \] is the velocity of light in the computational domain.
II.B Mur’s first order ABC

Mur’s first order ABC is characterized by its simplicity for implementation. In this approach the one-way wave equation may be written as [9].

\[
\left(\partial z - c^{-1}\partial t\right)W|_{z=0} = 0
\]

(4.1)

where,

W denote to the tangential electric field components.

c denote to the velocity of light.

It is assumed that the mesh is located in the region \(y \geq 0 \) as shown in Fig 1 and the excited pulse will be normal to the mesh walls. The boundary conditions for plane \(y = 0 \) (front wall) are expressed in terms of the tangential electric field components \(E_x \) and \(E_y \). The finite difference formulation of equation (4.1) can be written as [9].

\[
E_x^{n+1} = E_x^n + \frac{c \Delta t - \Delta z}{c \Delta t + \Delta z} (E_x^{n+1} - E_x^n)
\]

(4.2)

where,

\(E_x \) is the electric field components \(E_x \) or \(E_y \) on the front wall.

\(E_x \) is the electric field components \(E_x \) or \(E_y \) on the first node inside the front wall.

In a similar manner, one can write the other tangential electric field components at the other mesh walls.

II.C- PML-ABC

The PML technique consists in surrounding the computational domain of an open structure with an artificial lossy medium whose impedance is matched to free space for all frequencies and all incident angles [10-11]. The ability to absorb the outgoing waves is provided by the additional degrees of freedom introduced by splitting the field components within the anisotropic material properties [10-11]. With the splitting of the field components, the six Maxwell’s field equations are replaced by twelve equations. For instance, the \(H_y \) and \(E_z \) field equations are written as [10-11].
\[
\begin{align*}
\mu_r \frac{\partial H_x}{\partial t} + \sigma_r^e H_z &= -\frac{\partial (E_x + E_r)}{\partial y} \\
\mu_r \frac{\partial H_y}{\partial t} + \sigma_r^e H_x &= \frac{\partial (E_y + E_r)}{\partial x} \\
\varepsilon_r \frac{\partial E_x}{\partial t} + \sigma_r^e E_y &= \frac{\partial (H_x + H_y)}{\partial z} \\
\varepsilon_r \frac{\partial E_y}{\partial t} + \sigma_r^e E_x &= -\frac{\partial (H_y + H_x)}{\partial z}
\end{align*}
\]

where, \(\sigma^e \) denotes the magnetic loss.

The reflectionless condition of the PML medium is given by

\[
\frac{\sigma_r}{\varepsilon_r} = \frac{\sigma^e}{\mu_r}
\]

This relationship ensures that the wave impedance inside the PML is equal to the free-space wave impedance, and that the phase velocity inside the PML is the vacuum speed of light. To ensure that there is no reflections from PML regions to the computational domain, the amplitude of the wave propagating inside the PML is exponentially attenuated and absorbed. This is carried out by forcing the losses in the PML medium to increase gradually with the depth \(d \) of the PML layers. Thus the electric loss is set to zero at the interface between the FDTD domain and PML inner boundary (interface between the PML and the FDTD domain). The dependence of the loss on the depth can be assumed of the form

\[
\sigma_r(d) = \sigma_m \left(\frac{d}{\delta} \right)^n
\]

where,

- \(\delta \) denotes the PML thickness,
- \(\sigma_m \) denotes either \(\sigma_r^e, \sigma_r^s \), or \(\sigma_r^m \),
- \(n \) is an exponent which indicates the rate of increase of loss with depth,
- \(d \) denotes the depth of the PML medium, and
- \(\sigma_m \) denotes the maximum electric conductivity.

The magnetic losses is assumed to vary within the PML medium in the same manner as the electric loss.

To update the field components within the PML medium, the updated coefficients of the electric and magnetic field components given by the standard Yee's algorithm cannot be used. This is due to the fact that the attenuation of the propagating waves within the PML medium is so rapid. Therefore these coefficients are replaced by exponentially decaying coefficients within the PML medium [2].

III. Analysis of a line-fed rectangular patch antenna

The analyzed patch antenna is shown in Fig.1. The space steps used are \(\Delta x = 0.389 \text{mm}, \Delta y = 0.400 \text{mm}, \) and \(\Delta z = 0.265 \text{mm} \). The total mesh dimensions are 60x100x16 in the x, y, and z
directions, respectively. The rectangular patch antenna has \(L_1 = 32 \Delta x \) and \(L_2 = 40 \Delta y \). The length of the microstrip line from the source plane to the edge of the antenna is \(50 \Delta y \). The reference plane is \(10 \Delta y \) from the edge of the patch. The width of microstrip line \(w \) is \(6 \Delta x \), the displacement \(w_1 \) is \(5 \Delta x \), the substrate thickness \(h \) is \(3 \Delta z \), and \(13 \Delta z \) are used to model the free space above the substrate. The substrate dielectric constant is 2.2.

In the present analysis, a Gaussian pulse with unit amplitude is excited on the microstrip line at the edge of the computation domain i.e. at port 1 (source plane) as shown in Fig.1. This pulse is given by:

\[
E_z(t) = e^{-\frac{t^2}{\tau^2}}
\]

where,
\[
\tau = 0.441 \text{ ps},
\]
\(T \): Gaussian half width = 15 ps,
\(t_0 = 3T \)

Initially all the fields on the whole computation domain are set to zero. After the pulse has propagated away port 1, absorbing boundary conditions are implemented several cells from the source. The transient response are recorded at the reference plane until all the fields in the computation domain decay to a negligible steady-state value. Then the Fourier transformation is used to obtain the return loss, and the input impedance of the patch antenna according to [5].

Fig. 3, shows the field distribution of the electric field components \(E_x \), \(E_y \), and \(E_z \) at the plane, \(y = 40 \Delta y \), \(z = 10 \Delta z \), and 200 \(\Delta t \) time steps. The results have been obtained using FDTD with mixed boundary conditions of Mur’s FOC and PML absorber. In this figure, LR denotes that all absorbing walls are taken as Mur’s FOC except the left and right walls which are carried out as PML absorber, while FB only uses PML in the front and back walls and the other walls are Mur’s FOC. The thickness of the PML absorber is taken as 8 cells.

To determine the reflection coefficient of the patch, one must calculate the reflected wave at the reference plane. This is carried out by two FDTD simulations. The first simulation is for the analyzed structure which gives the reflected and incident waves (total) at the reference plane. The second simulation is for a nonreflecting structure with the identical input (i.e. the feeder extended to ABC). This provides a pure incident wave at the reference plane. Then the reflected wave is computed as the difference between the total (output of the first simulation) and the incident waveform (output of the second simulation).

Figs. 4 and 5 show the transient time response of the \(E_x \) component at the reference plane for both uniform microstrip line’s feeder and patch antenna, respectively.

The transient time response of \(E_x \) field component just underneath the dielectric-air interface at 200, 400, 600, 800, 1000 and 1200 \(\Delta t \) time steps are shown in Fig.6 where the excitation pulse and subsequent propagation on the antenna are observed.

From incident and reflected waves, one can calculate the return loss and then the input impedance of the proposed structure using Fourier transformations. Fig. 7 shows the return loss of the patch antenna up to 20 GHz. The results have been obtained using FDTD with Mur’s FOC or PML for all absorber walls. Comparing the obtained results with the measured data in [5], it is
found that the PML results are in better agreement with the measured data than those obtained by either the Mur’s FOC or LR, in particular for determining the locations of the resonance frequencies.

The real and imaginary parts of the input impedance of this antenna up to 20 GHz are shown in Fig.8 and Fig. 9, respectively. From these figures, it can be seen that at resonance frequencies the input impedance is pure real, especially for the case of using FDTD with PML absorber.

Focusing on the effect of patch width (L1) variation on the characteristics of the present patch antenna, it is found that the resonance frequencies as well as the return loss are increased with decreasing L1 as shown in Fig.10. In addition, both the real and imaginary parts of the input impedance increase as shown in Figs11 and 12, respectively. The data in the last figures are obtained by FDTD with PML absorber.

Fig. 13. shows the effect of feeder displacement (w1) on the return loss of the patch antenna. From this figure, one can observe that the return loss is inversely proportional with the displacement due to the mismatch losses at the interface between the feeder and the patch, while the resonance frequency locations remain at the same values[12].

The input impedance corresponding to each of the cases studied in Fig. 13, is shown in Figs. 14 and 15.

IV. Conclusion.

In this paper, the finite-difference time-domain FDTD method with the Breuniger perfect matched layer, and Mur’s FOC has been used to determine the time domain response, the return loss, and the input impedance of a line-fed rectangular patch antenna. This technique is characterized by its simplicity, ability to handle complex structures, and wide frequency response from one calculation. The effect of patch width and feeder displacement are studied. The results obtained by the FDTD with perfect matched layer absorber are found to be in much better agreement with the published measured data than those obtained by the FDTD with Mur’s FOC.

REFERENCES

Fig. 3. The field distribution versus the substrate width at \(y=40\Delta y, z=10\Delta z \), and \(t=200\Delta t \)

Fig. 4. The incident and reflected waves at reference plane on a uniform microstrip line

Fig. 5. The incident and reflected waves at reference plane on patch microstrip antenna
Fig. 6. Time-domain field response of the rectangular patch antenna
Fig. 7. The return loss of the patch antenna shown in Fig. 1 for different ABCs.

Fig. 8. The real part of the input impedance at the reference plane of the patch antenna shown in Fig. 1.

Fig. 9. The imaginary part of the input impedance at the reference plane of the patch antenna shown in Fig. 1.