FORCED CONVECTION FILM CONDENSATION OF FLOWING VAPOUR ON AN INCLINED CIRCULAR TUBE.

M. Mosand
Dept. of Metall. Engineering, Faculty of Engineering,
P. O. Box 52, Mansoura University, 35516, Egypt

ABSTRACT

In this work, an analytical study is made on the process of vertical downward forced-convection laminar-film condensation of a pure saturated vapour on an inclined circular tube. The governing partial differential equation for the local condensate film thickness has been solved analytically by applying the method of characteristics. An explicit analytic closed-form solution has been obtained for calculating the local and average Nusselt numbers. The general solution yields, the special known analytic solutions of condensation on the vertical and horizontal tubes. The results show that there is an optimum tube inclination, at which the maximum rate of condensation on the whole tube surface is a function of the ratio LD.

INTRODUCTION

Since the pioneering work of Nusselt (1916), many studies have been made on the laminar film condensation of a quiescent vapour on the surfaces of various shapes. Among these studies is that of Hassan and Jacob (1958) who adopted the Nusselt model to treat the problem of forced convection laminar film condensation on an inclined circular tube.

However, recent engineering applications, such as aerospace plants, nuclear reactors, etc., have promoted research on the condensation processes under forced vapour flow. Therefore, in recent years, much work has been done concerned with forced convection film condensation on surfaces of various forms. Many studies have been made on flat plates, e.g., Cis (1965), Koh (1967). Other studies made on horizontal and vertical tubes with circular and non-circular cross-sections, e.g., Shтрудle and Gouesbert (1966), Schmidt (1972), Gaudia (1977), Ros (1984) and Langert and Chen (1983). Recently, Rose (1985) made a comprehensive review on the forced convection laminar-film condensation.

Shтрудle and Gouesbert (1966) neglected the effects of convection, inertia, accelerating and gravity forces in the condensate film for vapour flow along horizontal and vertical plates, and for vapour downward flow over a horizontal tube. In addition, they assumed that the shear stress at the condensate surface is due to the change in the momentum of vapour mass condensing into the condensate surface. They estimated the interfacial shear by using an asymptotic infinite-condensation-rate expression. Thus, simple analytical solutions could be obtained.

Accepted December 29, 1968
To the author's knowledge, there has been no study on the forced-convecting-dominated laminar film condensation on an inclined circular tube, as that made by Hassan and Jacob on free convection-dominated film condensation. Therefore, the aim of the present work is to carry out this study. The assumptions of Shelke and Cumpston will be made as in the analysis.

ANALYSIS

Physical Model and Derivation

Consider a circular tube of radius R and inclined with an angle θ to the horizontal, is situated in a stream of pure dry saturated vapour having vertical down uniform velocity V_0. The wall temperature T_w is assumed uniform and below the vapour saturation temperature T_s. Thus, condensation film will form and flow on the external surface of the tube in both the axial and peripheral directions. Figure 1 shows a sketch of the physical model and coordinate system. In the present analysis, the vapour velocity is assumed to be sufficiently high so that the film motion is mainly controlled by the vapour shear and the effect of gravity force is negligible. In comparison with the momentum transferred by the condensing vapour mass, the effect of pressure gradient in the film may be neglected. In addition, the condensate film flow is considered laminar, steady and with negligible viscous dissipation. The condensing vapour is considered to be of an ordinary liquid. Thus, the effects of inertia and convection in the film may also be neglected.

The above-mentioned assumptions simplify the x- and y-momentum equations describing the condensate film motion, as follows:

x-momentum conservation:

$$\frac{\partial^2 u}{\partial y^2} = 0$$

(1)

y-momentum conservation:

$$\frac{\partial^2 w}{\partial y^2} = 0$$

(2)

where u and w are the velocity components in the x- and y-directions, respectively.

The above equations are subject to the boundary conditions:

$$u = w = 0, \quad y = 0$$

(3)

$$\frac{\partial u}{\partial y} = \frac{\tau_x}{\mu}, \quad \frac{\partial w}{\partial y} = \frac{\tau_y}{\mu}, \quad y = \delta$$

(4)

where τ_x and τ_y are respectively the x- and y-components of the interfacial vapour shear.
Fig. 1 Physical model and coordinate system.

By assuming potential flow outside the vapour boundary layer, together with using the infinite condensation rate approximation of Sheikholeslami and Gazelauri (1966), the interfacial shear components $\tau_{x\delta}$ and $\tau_{y\delta}$ may be approximated by

$$\tau_{x\delta} = m_c'' (2V_\infty \cos \phi \sin \psi)$$

(5)

$$\tau_{y\delta} = m_c'' V_\infty \sin \psi$$

(6)

where m_c'' is the local condensation mass flux.

Additionally, a heat balance at the liquid–vapour interface, as in the analysis by Nusselt, gives

$$h'' \omega_\delta = k \frac{\Delta T}{\delta}$$

(7)

where $h'' = (h'_f + 3C_p \Delta T/8)$ is the modified latent heat of condensation proposed by Reinshoof (1965) to account for condensate subcooling.
Equation (7) implies that the rate of heat transfer by conduction across the condensate film is equal to the rate of heat liberation by due to the vapour condensation at the liquid-vapour interface.

In the above interfacial shear model, the shear force is assumed to be equal to the change in the momentum of vapour mass condensing at the condensate surface. The interfacial condensate velocity is considered negligible when compared to the vapour velocity, as postulated in the analysis of By Shkriatze and Gomcnurt (1966).

Solving Eqs. (1) and (2) under the boundary conditions (3) and (4) in view of Eqs. (5) and (6) yields,

\[u = \frac{2m_y \cos \phi}{\mu} \frac{2K \Delta T}{b \mu \theta} V_x \sin \phi \]

\[w = \frac{m_y \sin \phi}{\mu} \frac{2K \Delta T}{b \mu \theta} V_x \sin \phi \]

For constant condensate physical properties, a mass balance for the element, shown in Fig. 1, yields:

\[m_x = \frac{1}{6} \left(\frac{\partial m_y}{\partial x} + \frac{\partial m_z}{\partial z} \right) = \frac{K \Delta T}{b \mu \theta} \]

\[= \rho \left(\frac{1}{\partial x} \frac{u dy}{} \right) + \rho \left(\frac{1}{\partial z} \frac{w dy}{} \right) \]

(10)

Combining Eqs. (8) through (10) and substituting \(dz = \mu b \), one gets for the local film thickness the differential equation:

\[\cos \phi \left(\frac{\delta^2 \cos \phi}{\delta \phi^2} + 2 \sin \phi \frac{\delta^2}{\delta \phi} + \frac{\delta \phi}{\delta \phi} \right) + \mu \sin \phi \frac{\delta^2}{\delta \phi} = \frac{2 \gamma D}{V_x} \]

(11)

Or in the dimensionless form,

\[\frac{\partial \Delta^2}{\partial \xi} + 2 \sin \phi \frac{\partial \Delta^2}{\partial \phi} = \frac{1}{2} - 4 \cos \phi \Delta^2 \]

(12)

for the dimensionless local film thickness,

\[\Delta = \frac{\delta}{2D} \sqrt{R_e \tan \phi} \cos \phi \]

(13)

as a function of the dimensionless axial length,

\[\Delta^* = \frac{\xi \tan \phi}{1} \]

(14)

and the peripheral angle \(\phi \).

The symbol \(\Delta^* \) in Eq. (13) denotes the two-phase Reynolds number. Equation (12) is subjected to the boundary conditions:
SOLUTION

Special Solutions

An inclined tube is the general case of the following special cases:

Vertical Tube. Setting $\phi = \pi / 2$ in Eq. (11) reduces it to one which leads finally to the relation:

$$\frac{N_u}{\sqrt{Re_e}} = 1 / 2$$ \hspace{1cm} (16)

for the local Nusselt number N_u (\text{w} \text{h} / \text{k}) as function of the two-phase Reynolds number $Re_e (\sqrt{V_e / \nu})$. Hayhew and Aggarwal (1975) obtained the same result for the vertical plate and recommended it for the vertical tube provided that the condensate film thickness is much less than the tube diameter.

Inclined Plate. Setting $R = \infty$ in Eq. (11) reduces it to one for condensation on an inclined flat plate. This reduced equation leads finally to the expression:

$$\frac{N_u}{\sqrt{Re_e}} = \frac{1}{2} \sqrt{\sin \phi}$$ \hspace{1cm} (17)

for the local Nusselt number as function of Re_e and the inclination angle ϕ.

Horizontal Tube. Substitution $\phi = 0$ in Eq. (11) reduces it to the ordinary differential equation

$$2^3 \cos \phi \sin \phi \frac{d^3}{d \phi^3} = \nu \frac{d}{d \phi} V_\infty$$ \hspace{1cm} (18)

whose solution subject to the boundary condition: $d^2 / d \phi = 0$ at $\phi = 0$, is

$$\delta = \sqrt{\frac{1 - \cos \phi}{\sin \phi}} \sqrt{\frac{dV}{V_\infty}}$$ \hspace{1cm} (19)

From the above results, one gets the expression:

$$\frac{N_u}{\sqrt{Re_e}} = \sin \phi \sqrt{1 - \cos \phi} \pi \delta \neq 0$$ \hspace{1cm} (20)

for the local Nusselt number $N_u = (\text{w} \text{h} / \text{k})$.

Taking the limit of the fraction at $\phi = 0$, the value of $\frac{N_u}{\sqrt{Re_e}}$ equal $\sqrt{2}$

Next, integrating Eq. (20) yields,
$$\frac{\nu_0}{\sqrt{Re_D}} = 0.9$$ \hspace{1cm} \text{(21)}$$

For the mean Nusselt number $\nu_0 = (\bar{k}/D)$. The same solutions were obtained previously by Shekildge and Comellas (1965) for a horizontal tube in a downward vapor flow in the absence of gravity.

Infinite-length inclined tube. For large distance from the starting edge of an inclined tube, the film becomes fully developed and the local film thickness is only function of the peripheral angle ϕ.

For this case, Eq. (12) reduces to

$$\sin \frac{\pi}{4} \frac{d\Delta}{d\phi} = 2 \cos \phi \Delta^2 = 1/4$$ \hspace{1cm} \text{(22)}$$

This equation, except for the definition of Δ, has the same form as Eq. (18) for condensation on a horizontal tube.

Solution of Eq. (22) subject to the boundary condition (15 b) yields

$$\Delta = \sqrt{1 - \cos \phi} / (2 \sin \phi)$$ \hspace{1cm} \text{(23)}$$

for the dimensionless local film thickness Δ.

Combining Eqs. (13) and (23) and using the classical relation $h = k/\delta$, gives for the local Nusselt number:

$$\frac{Nu_l}{\sqrt{Re_D \cos \phi}} = \frac{\sin \phi}{\sqrt{1 - \cos \phi}}: 0 < \phi < \pi.$$ \hspace{1cm} \text{(24)}$$

and at the upper point $\phi = \pi$, the value equals $\sqrt{2}$. By integration Eq. (14), one gets for the mean Nusselt number

$$\frac{\nu_0}{\sqrt{Re_D \cos \phi}} = 0.9$$ \hspace{1cm} \text{(25)}$$

The above expressions (24) and (25), except the normalization of Nu_D by the term $\sqrt{\cos \phi}$, are the same as for the horizontal tube given by Eqs. (20) & (21).

General Solution

An inclined tube of finite length represents the most general case. In this case, Eq. (12) has to be solved subject to the boundary conditions given by Eqs. (15a, b). An analytical solution is possible using the method of characteristics. The subsidiary equations read:

$$dZ = \frac{d\phi}{2 \sin \phi} = \frac{d\Delta^2}{(1/2 - 4 \Delta^2 \cos \phi)}$$ \hspace{1cm} \text{(26)}$$

Rearranging and integration yields
\[Z^* = \frac{1}{2} \ln \left[\tan \left(\frac{\phi}{2} \right) \right] + C_1 \] \hspace{1cm} (27)

\[\Delta = \frac{1}{2 \sin \phi} \left[\int_{\phi}^{\pi} \sin \psi \, d\phi + C_2 \right] \left(\frac{1}{2} \right) \] \hspace{1cm} (28)

Equation (27) describes the flow path of the condensate on the external tube surface.

Applying the boundary condition (15a) on Eqs. (27) and (28) yields respectively:

\[Z^* = \frac{1}{2} \ln \left[\tan \left(\frac{\phi}{2} \right) / \tan(\phi^*) \right] \] \hspace{1cm} (29)

\[\Delta = \frac{1}{2 \sin \phi} \sqrt{\cos \phi^* - \cos \phi} \hspace{1cm} 0 < \phi < \pi \] \hspace{1cm} (30)

Equation (12) with the boundary condition (15b) give the dimensionless local film thickness at the top (\(\phi = 0 \)) and the bottom (\(\phi = \pi \)) of the inclined tube as follows:

\[\Delta_{\phi=0} = \sqrt{\left(1 - \exp(-4Z^*)\right) / 8} \] \hspace{1cm} (31)

\[\Delta_{\phi=\pi} = \sqrt{\left(\exp(4Z^*) - 1\right) / 8} \] \hspace{1cm} (32)

Combining Eq. (13) with Eqs. (30) to (32) and using the basic relation \(h = \sqrt{k} \), leads finally to the local Nusselt number expression:

\[\frac{Nu}{\sqrt{Re_D}} \cos \phi = \frac{\sin \phi}{\sqrt{\cos \phi^* - \cos \phi}} \hspace{1cm} 0 < \phi < \pi \]

\[= \frac{\sqrt{2 / \left(1 - \exp(-4Z^*)\right)}}{\sqrt{\exp(4Z^*) - 1}} \hspace{1cm} \phi = 0 \] \hspace{1cm} (33)

\[= \sqrt{2 / \left(\exp(4Z^*) - 1\right)} \hspace{1cm} \phi = \pi \]

The angle \(\phi^* \) is defined from Eq. (29) by

\[\phi^* = 2 \arctan \left[\tan \left(\frac{\phi}{2} \right) / \exp \left(2Z^* \right) \right] \hspace{1cm} 0 < \phi < \pi \] \hspace{1cm} (34)

Equations (33) and (34) represent the general solution of the problem. For \(Z^* \to \infty \), Eq. (34) yields \(\phi^* = 0 \). Accordingly, Eq. (33) reduces to Eq. (24) of the infinite-tube-length case. Comparing Eqs. (33) and (24) reveals that the term \(\cos \phi^* \) in Eq. (33) accounts for the finite length effect. Next, the local peripherally averaged Nusselt number can be calculated from.
\[\text{Nu}_L \sqrt{\text{Re}_D \cos \phi} = \frac{1}{\pi} \int_0^{2\pi} \frac{1}{1 + \Delta} \, d\phi \]

\[\text{Nu}_L \sqrt{\text{Re}_D \cos \phi} = \frac{1}{\pi} \int_0^{2\pi} \frac{1}{1 + \Delta} \, dZ^+ \]

Finally, the mean Nusselt number \(\overline{\text{Nu}}_L \) for the entire surface of a tube with dimensionless total length \(L' \), can be estimated as

\[\overline{\text{Nu}}_L \sqrt{\text{Re}_D \cos \phi} = \frac{1}{\pi L'} \int_0^{2\pi} \frac{1}{1 + \Delta} \, dZ^+ \]

The numerical evaluation of Eqs. (35) and (36) is not fully determined because at \(\phi = \pi \) and \(Z^+ \to \infty \), the value of \(\Delta \), calculated from Eq. (34), goes to infinity. This problem can be overcome by substituting \(\phi = \pi \) by values very close to \(\pi \). Numerical calculations have shown that with \(\phi = 3.115 \), reasonable accuracy could be achieved. Simpson's rule has been used for carrying out this numerical task. The simple analytic solution of the infinitely long tube, given by Eqs. (34) and (25), has been used as a reference to assess the accuracy of the numerical results. The relative absolute errors in Nusselt numbers were less than 1%.

RESULTS AND DISCUSSION

Figure 2 shows the variation of the dimensionless local film thickness around the tube periphery at different axial locations, calculated using Eqs. (29) to (32). It can be seen that downstream from the starting "upper" edge of the tube, the film thickness increases in both the axial and peripheral directions. Beyond a short length of \(Z^+ \approx 2.6 \), the peripheral variation of the dimensionless local film-thickness takes a fixed profile as that at infinity. Variation of the local, peripherally averaged Nusselt number, estimated numerically by Eq. (35),

\[\text{Nu}_L \sqrt{\text{Re}_D \cos \phi} \]

along the tube, is shown in Fig. 3; in terms of \(Z^+ \), versus \(Z^+ \). It decreases with increasing \(Z^+ \); from an infinite value at the start point \(Z^+ = 0 \) to assume a constant value equal to 0.9 as \(Z^+ \approx 2.6 \). This value is the constant value of the infinite-length solution. Thus, the condensation process beyond a short length from the upper tube edge becomes as that on an infinitely long tube.
Fig. 2 Dimensionless film thickness distribution around the tube periphery at different axial locations.

Fig. 3 Variation of peripherally-averaged Nusselt number along tube.
Fig. 4 Mean Nusselt number as function of dimensionless tube length, $Z^* = Z/(R \tan \alpha)$.

Fig. 5 Mean Nusselt number as function of inclination angle.
The mean Nusselt number for the whole tube surface is plotted in Fig. 4; in the form of $\frac{\overline{Nu}}{\sqrt{\cos \theta R_e_0}}$ versus the dimensionless tube length $Z = Z(\theta R_e_0)$. The results indicate that for $L \leq 40$, the mean Nusselt number is the same as that of an infinitely long tube, given by Eq. (21).

Dependence of the mean Nusselt number on the tube inclination angle is shown in Fig. 5. Clearly, an optimum angle, at which \overline{Nu} is maximum, decreases as the ratio L/D increases, as shown in Fig. 5.

CONCLUSIONS

This is the first analytical approach for solving the problem of forced-convection laminar film condensation on an inclined circular tube. The main points that can be drawn from this study are:

1. An explicit general solution, in closed-form given by Eq. (23), has been obtained analytically for calculating the local Nusselt number.
2. Closed-form explicit expressions (24) and (25) have been obtained analytically for calculating local and mean Nusselt numbers in the case of an infinite tube length. These expressions can be applied with good accuracy for the inclined tubes of $L/D \geq 40$, encountered in most practical purposes.

NOMENCLATURE

- C_1, C_2 integration constants
- C_p specific heat of condensate at constant pressure
- h_{fg} latent heat of condensation
- k_x modified latent heat of condensation
- D tube diameter
- k thermal conductivity of condensate
- L_* dimensionless tube length
- \dot{m} condensate mass flow rate per unit peripheral length
- \dot{m}_c condensation mass flux
- $Nu = \alpha D/k$, local Nusselt number
- $\overline{Nu} = \overline{\alpha} D/k$, mean Nusselt number
- R_e tube radius
- $Re_0 = \frac{V_c D}{v}$, two-phase Reynolds number for horizontal tube
- $Re_x = \frac{V_c D}{v}$, two-phase Reynolds number for vertical tube
- T temperature
- $\Delta T = (T_w - T_0)$, temperature drop across the condensate film
- w, w_0 condensate velocity component in x- and z- directions, respectively
- V_∞ free-stream vapour velocity
- x peripheral coordinate
- z axial coordinate
- Z^* dimensionless axial coordinate

Greek symbols

- α $= k\beta$, local heat transfer coefficient
- δ local film thickness
- Δ dimensionless local film thickness
- ρ density of condensate
- ϕ peripheral angle from top point of tube
- ψ angle of inclination of tube with horizontal
- v kinematic viscosity of condensate

Subscripts

- $-$ mean value
- x tube length
- w tube wall
- s saturation
- x x-direction
- z z-direction
- ϕ location corresponding to ϕ-angle.
REFERENCES