Abstract:

The woven fabric can not be produced with any yarn density as there is a maximum value of yarn sett which can not be exceeded. This limit depends on yarn geometry, properties, adjustments and type of weaving machine. Exceeding this limit causes increasing stresses on parts of the weaving machine and affects the quality of the woven fabric. Researchers tried to find out formulae to express this limit as a function of yarn type, yarn count and weave structure. They reached different formulae. Some researchers verified these formulae experimentally. They found that some formulae need correction. This paper aims to find mathematical formulae to express the maximum sett of yarns in the woven fabric as a function of weave structure and yarn diameters based on a geometrical model of the woven fabric. This paper presents also mathematical formulae of some quantities that depend on yarn sett such as weave angle, yarn spacing, yarn crimp ratio, weave value, yarn cover ratio, and fabric cover ratio. For practical application purposes two graphs are presented to determine maximum yarn density (e.g., weft density). The first graph gives the maximum sett of plain or floated woven fabrics. The second graph gives the weave value of extended weaves in terms of diameter ratio and average yarn float. To obtain the maximum sett in an extended weave, its weave value is multiplied by the maximum sett of the corresponding plain weave.

Accepted September 14, 1997.
T. 2
Hamdy A. A. Ebraheem

I. Introduction:

The maximum number of ends and picks per unit length that can be woven with a given yarn and weave is an important issue for weave designers. Weave designer should be sufficiently familiar with construction limit to avoid difficult and unachievable constructions. With constructions above or near the upper weavability limit, parts of the weaving machine may be overstressed and damaged. For this reasons, the subject of weavability limit for regular thickness yarns has attracted many researchers. Empirical and theoretical relationships relating maximum warp and filling cover factors for regular yarns have been derived. Theoretical relationships are provided in graphic forms for simple weaves [1].

Plate et al. recommended using a full-width temple and early shed timing for weaving tight fabrics [2]. Seyam et al. [3] studied the weavability limit of fabrics made from irregular thickness filling yarn. They concluded that yarn regularity increases weavability limit. They [4] also concluded that weavability limit depends on warp and weft yarn counts, fibre packing in the yarn (spinning method), fibre type, weave design (warp and filling spacings), loom type and setting, and yarn uniformity. Snowden [5] states that limits of sets depend on loom construction and weaving conditions. These limits depend on loom type (light or heavy), dobby mechanism (negative or positive), let-off mechanism (negative or positive), and take-up mechanism (negative or positive). Weaving conditions that affect limits of sets are warp tension, shed change timing, and back rest position.

It's concluded from literature that there are so many relations, assumptions, and empirical formulas that determining weavability limit is still difficult. My opinion in this respect is that weavability limit of any fabric on any weaving machine is a value which we don't want to approach but we want to be safely below it. This is because of both difficulty of achieving and side problems arising with respect to machine and fabric. For this I don't want to assume that yarns lose their circular cross-section and become of either elliptical or race-track cross-section.

The object of this work is to deduce simple and safe formulae to determine the weavability limit as a function of weave design and yarn diameters, and to give an idea about the maximum crimp ratios of yarns and cover ratio of fabric. The lower value of weavability limit is more achievable than the higher value especially on modern and faster weaving machines rather than multi-phase weaving machines.

II. Maximum Construction Theories [6]:

1. Ashenhurst's “ends plus intersections” Theory:

This theory states that

\[
T = \frac{e}{d(e+i)}
\]

\[T = \text{max. ends or picks / inch}
\]

\[e = \text{ends or picks / weave repeat}
\]

\[i = \text{intersections / weave repeat}
\]

\[d = \text{yarn diameter in inches}
\]
under the following assumptions:
- warp diameter = weft diameter.
- the spaces between threads are equal to their diameter.
- yarns are uniform cylinders.

2- Ashenburh's General Theory:

This theory states that

\[t_1 = \frac{t_1}{e_1 d_1 + i_1 d_1} \] \hspace{1cm} (2)

and

\[t_2 = \frac{e_2}{e_2 d_2 + i_2 d_2} \] \hspace{1cm} (3)

\[t_1 = \text{maximum ends} / \text{inch} \]
\[t_2 = \text{maximum picks} / \text{inch} \]
\[e_1 = \text{ends} / \text{weave repeat} \]
\[e_2 = \text{picks} / \text{weave repeat} \]
\[i_1 = \text{warp intersections} / \text{weave repeat} \]
\[i_2 = \text{weft intersections} / \text{weave repeat} \]
\[d_1 = \text{warp yarn diameter in inches} \]
\[d_2 = \text{weft yarn diameter in inches} \]

3. Curvature Theory:

For square fabric, Ashenburh corrected his "ends plus intersections" theory by the curvature theory. Accordingly

\[t = \frac{e}{d(e + 0.7321)} \] \hspace{1cm} (4)

4. Peirce's maximum weavability formula for plain weave cotton fabric [6]:

This formula is as follows:

\[\sqrt{1 - \frac{28}{(1 + \beta) k_1}} + \sqrt{1 - \frac{28 \beta}{(1 + \beta) k_2}} = 1 \] \hspace{1cm} (5)

\[k_1 \] and \[k_2 \] are warp and filling cover factors respectively.

\[K_1 = \frac{28 d_i}{P_i} \hspace{1cm} (6) \]
\[K_2 = \frac{28 d_j}{P_j} \hspace{1cm} (7) \]
\[\beta = \frac{d_i}{d_j} \hspace{1cm} (8) \]

\[P_i \] and \[P_j \] are warp and filling yarn spacings, respectively, and \[d_i \] and \[d_j \] are warp and filling yarn diameters, respectively.

5. Love completed after Peirce (3, 4, and 5 harness) assuming race-track shape of threads under float.

6. Snowden's maximum sett formulae [4]:

- Plain weave sett (ends and picks / cm)

\[S = \frac{135}{\sqrt{T}} \hspace{1cm} (9) \]

\[T \] is tex count
- Weave sett (ends and picks/cm for any weave)
 \[V = \frac{135}{\sqrt{T}} \] (10).

\(V \) is the weave value

For 2/2 twill \(V = 1.31 \) and for 3/3 mat weave \(V = 1.9 \).

III. Maximum Construction Experiments [4]:

1. Experimental Verification of Ashenhurst's Theories:

Law tested woven fabrics of maximum sett. His results agreed for short floated twill weaves but they were more for long floated twill weaves. He made corrections in Ashenhurst's theories for different weaves.

2. Brierley concluded from Ashenhurst's geometry that fabric thickness must be the same whatever its weave. His experiments showed that the float length or (weave) affects fabric thickness. His experimental results agreed with Law's additional allowances.

3. Based on experimental evidence, Armitage introduced his empirical formula of the maximum threads/inch as follows [4]:

\[t = S \left(\frac{yN}{10}\right)^{1/2} \] (11).

\(t \) = maximum ends or picks/inch,

\(y \) = cloth setting constant that depends on yarn numbering system,

\(N \) = yarn count in the indirect system, and

\(S \) = setting ratio varying with weave.

He determined the cloth constant \(y \) for worsted, woolen, and cotton as 6, 2.56, and 9.56, respectively. Table (1) shows Armitage's cloth setting (S) for different weaves.

<table>
<thead>
<tr>
<th>Weave</th>
<th>Cloth Setting (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular twill</td>
<td></td>
</tr>
<tr>
<td>Plain</td>
<td>4.75</td>
</tr>
<tr>
<td>2/2 Basket</td>
<td>6.2</td>
</tr>
<tr>
<td>3/3 Basket</td>
<td>7.5</td>
</tr>
<tr>
<td>4/4 Basket</td>
<td>8.5</td>
</tr>
<tr>
<td>4- Harness satin</td>
<td>6.2</td>
</tr>
<tr>
<td>5- Harness satin</td>
<td>7.5</td>
</tr>
<tr>
<td>6- Harness satin</td>
<td>7.75</td>
</tr>
<tr>
<td>8- Harness satin</td>
<td>9.00</td>
</tr>
</tbody>
</table>

Table (1): Armitage's cloth setting (S) for different weaves:

4. Brierley derived the following equation for square worsted fabrics [4]:

\[t = f^m (KN)^{1/2} \] (12).

\(t \) = max. ends or picks/inch,

\(f \) = Average float

\(K \) = 134 for worsted yarn from 100% wool.
Table (2) shows empirical values of \(m \).

<table>
<thead>
<tr>
<th>Weave</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basket weaves</td>
<td>0.45</td>
</tr>
<tr>
<td>Twill weaves</td>
<td>0.39</td>
</tr>
<tr>
<td>Satin weaves</td>
<td>0.42</td>
</tr>
</tbody>
</table>

If warp and filling are different in count, then \(N \) is replaced by the average count.

Brierley worked on unbalanced fabric and derived the following empirical relationships:

\[
\begin{align*}
(a) \quad P &= CE^{0.67} \quad \text{(warp count = filling count)} \quad (13) \\
(b) \quad P &= CE^{0.47}A \quad \text{(filling is thicker than warp)} \quad (14) \\
(c) \quad P &= CE^2 \quad \text{(warp is thicker than filling)} \quad (15)
\end{align*}
\]

\[A = \frac{N_2}{N_1}, \quad N_1 \text{ and } N_2 \text{ are warp and filling yarn count in an indirect system, respectively.} \]

\[P = \text{picks/inch}, \quad E = \text{ends/inch}, \quad C = \text{cloth structure constant calculated from maximum square construction} \quad t = f^2 (KN)^{f^2} \quad (16)\]

\[N_1 \text{ the value of } m \text{ in the last expression.} \]

IV. Weavability Limit of Plain Woven Fabric:

Fig. (1) shows geometry of jammed plain woven fabric. From this figure the following expressions could be derived (subscripts 1 and 2 are for warp and filling, respectively):

(a) Weave angle \(\theta \):

\[
\begin{align*}
\cos \theta_1 &= \frac{d_1}{d_1 + d_2} \\
\cos \theta_2 &= \frac{d_2}{d_1 + d_2} \\
: \quad \cos \theta_1 + \cos \theta_2 &= 1
\end{align*}
\]

\[d \text{ is yarn diameter.} \]

(b) Yarn spacing \(P \):

\[
\begin{align*}
P_1 &= \sqrt{d_1^2 + 2d_1d_2} \\
P_2 &= \sqrt{d_2^2 + 2d_1d_2}
\end{align*}
\]

(c) Yarn Crimp Ratio \(C \):

\[
\begin{align*}
C_1 &= \frac{\pi}{180} \left(\frac{d_1}{d_1 + d_2} \right) \cos^{-1} \left(\frac{d_1}{d_1 + d_2} \right) - 1 \\
C_2 &= \frac{\pi}{180} \left(\frac{d_2}{d_1 + d_2} \right) \cos^{-1} \left(\frac{d_2}{d_1 + d_2} \right) - 1
\end{align*}
\]
Fig(1) Geometrical Model of Plain Woven Fabric

Fig(2) Geometrical Model of Twill Woven Fabric

Fig(3) Geometrical Model of Satin Woven Fabric
(d) Yarn Cover Ratio (Kc):

\[K_1 = \frac{d_1}{\sqrt{d_1^2 + 2d_1d_2}} \]

\[K_2 = \frac{d_1}{\sqrt{d_2^2 + 2d_2d_1}} \]

(e) Cloth Cover Ratio (Kc):

\[K_c = \frac{d_1}{\sqrt{d_1^2 + 2d_1d_2}} + \frac{d_2}{\sqrt{d_2^2 + 2d_2d_1}} - \frac{d_1d_2}{\sqrt{2d_1^2d_2 + 5d_1^2d_1^2 + 2d_1d_2d_3}} \]

(f) Maximum Sett (n):

\[n_1 = \frac{1}{\sqrt{d_1^2 + 2d_1d_2}} \]

\[n_2 = \frac{1}{\sqrt{d_2^2 + 2d_2d_1}} \]

V. Weavability Limit of Floated Woven Fabric:

Fig. (2) shows geometry of jammed floated woven fabric. From this geometry the following expressions could be derived (subscripts 1 and 2 are for warp and filling, respectively):

(a) Weave angle, yarn spacing, yarn cover ratio, cloth cover ratio, and maximum sett have the same expressions as for plain woven fabric.

(b) Yarn Crimp Ratio (C):

\[C_1 = \frac{1}{F_1} \left[\frac{\pi(d_1 + d_2)}{180\sqrt{d_1^2 + 2d_1d_2}} \cos^{-1} \left(\frac{d_1}{d_1 + d_2} \right) - 1 \right] \]

\[C_2 = \frac{1}{F_2} \left[\frac{\pi(d_1 + d_2)}{180\sqrt{d_2^2 + 2d_2d_1}} \cos^{-1} \left(\frac{d_2}{d_1 + d_2} \right) - 1 \right] \]

F is yarn average float.

It can be concluded that yarn crimp ratio in a floated woven fabric is equal to the value of yarn crimp ratio in the corresponding plain woven fabric divided by yarn average float in the floated fabric. In other words the plain woven fabric is a special case of floated woven fabrics as it has a yarn average float of 1. It can be expressed that the product of yarn average float and yarn crimp ratio is constant for floated fabrics made from warp and filling yarns of the same geometries.

VI. Weavability Limit of Extended Woven Fabrics:

Fig. (3) shows geometry of jammed extended woven fabric. From this geometry the following expressions could be derived (subscripts 1 and 2 are for warp and filling, respectively):

(a) Maximum Sett (n):

In extended woven fabrics, yarn spacing is not uniform, i.e.:

- warp yarn spacing is either \(d_1 \) (warp ends in contact) or \(P_1 \) (warp ends separated by a filling yarn).
- Weft yarn spacing is either \(d_1 \) (weft yarns in contact) or \(P_2 \) (weft yarns separated by a warp yarn).

\(P \) is as in plain woven fabric. Therefore yarn sett \((n) \) is expressed as follows.

\[
\begin{align*}
 n_1 &= \frac{F_1}{\sqrt{d_1^2 + 2d_1d_2 + (F_1 - 1)d_1}} \\
 n_2 &= \frac{F_2}{\sqrt{d_2^2 + 2d_2d_1 + (F_2 - 1)d_2}}
\end{align*}
\]

(31)

\(F \) is yarn average float and \(n \) is overall yarn sett.

(b) Weave angle is as in plain woven fabric.

(c) Yarn Cover Ratio \((K) \):

\[
K_1 = \frac{F_2d_1}{\sqrt{d_1^2 + 2d_1d_2 + (F_1 - 1)d_1}}
\]

(33)

\[
K_2 = \frac{F_1d_2}{\sqrt{d_2^2 + 2d_2d_1 + (F_2 - 1)d_2}}
\]

(34)

(d) Cloth Cover Ratio \((K_c) \):

\[
K_c = \frac{F_2d_1\sqrt{d_1^2 + 2d_1d_2 + (F_1 - 1)d_1} + F_1d_2\sqrt{d_2^2 + 2d_2d_1 + (F_2 - 1)d_2} - F_1F_2d_1d_2}{\sqrt{d_1^2 + 2d_1d_2 + (F_1 - 1)d_1} + \sqrt{d_2^2 + 2d_2d_1 + (F_2 - 1)d_2}}
\]

(35)

(e) Yarn Crimp Ratio \((C) \):

\[
C_1 = \frac{\pi}{180} (d_1 + d_2) \cos^{-1} \frac{d_1}{d_1 + d_2} + (F_1 - 1) d_2
\]

\[
C_2 = \frac{\pi}{180} (d_1 + d_2) \cos^{-1} \frac{d_2}{d_1 + d_2} + (F_2 - 1) d_1
\]

(36)

(37)

VII. Dimensionless Relations:

Yarn crimp ratio, yarn cover ratio, cloth cover ratio, weave value, and ratio between weft sett and warp sett are dimensionless quantities. They can be expressed as functions of dimensionless quantities by introducing the dimensionless quantity \(\beta = \frac{d_2}{d_1} \). Parameter \(\beta \) was termed by Peirce [6] as the yarn balance. For convenience I will term \(\beta_1 = \frac{d_2}{d_1} \) and \(\beta_2 = \frac{d_1}{d_2} \). On this basis the following can be deduced:

(a) Yarn Crimp Ratio \((C) \):

- For jammed plain woven fabric:

\[
C_1 = \frac{\pi (\beta + 1)}{180 \sqrt{1 + 2\beta}} \cos^{-1} \frac{\beta_1}{\beta_1 + 1} - 1
\]

\[
C_2 = \frac{\pi (\beta + 1)}{180 \sqrt{1 + 2\beta}} \cos^{-1} \frac{\beta_2}{\beta_2 + 1} - 1
\]

(38)

(39)

- For jammed floated woven fabric:

\[
C_1 = \frac{1}{F_1} \left[\frac{\pi (\beta_1 + 1)}{180 \sqrt{1 + 2\beta_1}} \cos^{-1} \frac{\beta_1}{\beta_1 + 1} - 1 \right]
\]

(40)
\[C_1 = \frac{1}{F_2} \left[\frac{\pi (B_+ + 1)}{180} \cos^{-1} \left(\frac{B_+}{B_1 + 1} \right) \right] \]
\[- \text{For jammed extended woven fabric:} \]
\[C_1 = \frac{\pi}{180} \left(B_+ + 1 \right) \cos^{-1} \left(\frac{B_+}{B_1 + 1} \right) \sqrt{\frac{1}{2B_+ + (F_1 - 1)}} - 1 \]
\[C_{1b} = \frac{\pi}{180} \left(B_+ + 1 \right) \cos^{-1} \left(\frac{B_+}{B_1 + 1} \right) \sqrt{\frac{1}{2B_+ + (F_1 - 1)}} - 1 \]

(b) Yarn Cover Ratio \((K_1)\):
- For jammed plain woven fabric:
\[K_1 = \frac{b_1}{\sqrt{2b_1 + 2b_2}} \]
\[K_2 = \frac{b_2}{\sqrt{2b_1 + 2b_2}} \]
- For jammed floated woven fabric
The same as for jammed plain woven fabric.
- For jammed extended woven fabric:
\[K_1 = \frac{F_1 b_1}{\sqrt{2b_1 + 2b_2 + (F_1 - 1)b_1}} \]
\[K_2 = \frac{F_1 b_2}{\sqrt{2b_1 + 2b_2 + (F_1 - 1)b_1}} \]

(c) Cloth Cover Ratio \((K_2)\):
- For jammed plain woven fabric:
\[K_2 = \frac{\sqrt{1 + 2B_1 + 1}}{\sqrt{2B_1 + 5 + 2B_2}} \]
- For jammed floated woven fabric:
The same as for jammed plain woven fabric.
- For jammed extended woven fabric:
\[K_{2b} = \frac{F_1 \left[\sqrt{1 + 2B_1 + (F_1 - 1)} + \sqrt{1 + 2B_1 + (F_1 - 1)} \sqrt{2B_1 + 5 + 2B_2} \right] - F_1 F_2}{\sqrt{2B_1 + 5 + 2B_2 + (F_1 - 1) \sqrt{2B_1 + 5 + 2B_2} + (F_1 - 1) \sqrt{1 + 2B_1 + (F_1 - 1) \sqrt{1 + 2B_1 + (F_1 - 1) \sqrt{2B_1 + 5 + 2B_2}}}} \]

(d) Weave Value \((V)\):
It is the ratio of maximum sett in a fabric of a certain weave to maximum sett of the plain woven fabric made from identical yarns.
- For extended woven fabrics:
\[V_1 = \frac{F_1 \sqrt{1 + 2B_1}}{\sqrt{1 + 2B_1 + (F_1 - 1)}} \]
\[V_2 = \frac{F_1 \sqrt{1 + 2B_1}}{\sqrt{1 + 2B_1 + (F_1 - 1)}} \]
- For floated woven fabrics:
\[V_1 = \frac{1}{n} \]
\[V_2 = 1 \]

but the weaving machine operates more efficiently.

(c) Relation between warp set and weft sett:

- For jammed plain weave:
 \[n = \frac{1 + 2\beta}{\sqrt{\beta + 2\beta}} n \] \hspace{2cm} (52)

- For jammed floated weave:
 as for jammed plain weave.

- For jammed extended weave:
 \[n = \frac{F_l}{\sqrt{\beta + (F_l - 1)}} n \] \hspace{2cm} (53)

VIII: Maximum Sett for Fabric Designers in Practice:

In the weaving shed the workers need to determine the maximum sett resulting from weaving certain yarns lest they should exceed it. Table (3) gives maximum sett of weft in terms of yarn diameters in plain or floated woven fabrics based on equation (28). These results are presented graphically in Fig. (4). Weave value of extended weaves is given in Table (4) in terms of yarn diameters ratio and yarn average float based on equation (51). This is shown in Fig. (5). Maximum sett of extended weave is equal to its weave value multiplied by maximum sett of the corresponding plain or floated weave. Maximum yarn density in extended weaves can be directly determined using equation (32). This is shown in Table (5) and Fig. (6).

Table (3): Maximum Weft Density (yarn/cm) in Plain and Floated Weaves in Terms of Yarn Diameters Based on Equation (28):

<table>
<thead>
<tr>
<th>Weft Diameter (cm)</th>
<th>0.02</th>
<th>0.04</th>
<th>0.06</th>
<th>0.08</th>
<th>0.10</th>
<th>0.12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>28.87</td>
<td>22.36</td>
<td>18.90</td>
<td>16.67</td>
<td>15.08</td>
<td>13.87</td>
</tr>
<tr>
<td>0.04</td>
<td>17.68</td>
<td>14.42</td>
<td>12.5</td>
<td>11.18</td>
<td>10.21</td>
<td>9.45</td>
</tr>
<tr>
<td>0.06</td>
<td>12.91</td>
<td>10.91</td>
<td>9.62</td>
<td>8.70</td>
<td>8.01</td>
<td>7.45</td>
</tr>
<tr>
<td>0.08</td>
<td>10.21</td>
<td>8.84</td>
<td>7.91</td>
<td>7.22</td>
<td>6.68</td>
<td>6.25</td>
</tr>
<tr>
<td>0.10</td>
<td>8.45</td>
<td>7.45</td>
<td>6.74</td>
<td>6.20</td>
<td>5.77</td>
<td>5.42</td>
</tr>
<tr>
<td>0.12</td>
<td>7.22</td>
<td>6.45</td>
<td>5.89</td>
<td>5.46</td>
<td>5.10</td>
<td>4.81</td>
</tr>
<tr>
<td>0.14</td>
<td>6.30</td>
<td>5.79</td>
<td>5.24</td>
<td>4.88</td>
<td>4.58</td>
<td>4.34</td>
</tr>
<tr>
<td>0.16</td>
<td>5.59</td>
<td>5.10</td>
<td>4.72</td>
<td>4.42</td>
<td>4.17</td>
<td>3.95</td>
</tr>
<tr>
<td>0.18</td>
<td>5.03</td>
<td>4.62</td>
<td>4.30</td>
<td>4.04</td>
<td>3.82</td>
<td>3.64</td>
</tr>
<tr>
<td>0.20</td>
<td>4.56</td>
<td>4.23</td>
<td>3.95</td>
<td>3.73</td>
<td>3.54</td>
<td>3.37</td>
</tr>
<tr>
<td>d_1/d_2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>1.084</td>
<td>1.115</td>
<td>1.131</td>
<td>1.141</td>
<td>1.148</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1.146</td>
<td>1.204</td>
<td>1.236</td>
<td>1.256</td>
<td>1.269</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>1.195</td>
<td>1.277</td>
<td>1.323</td>
<td>1.353</td>
<td>1.373</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.234</td>
<td>1.339</td>
<td>1.398</td>
<td>1.436</td>
<td>1.463</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.268</td>
<td>1.392</td>
<td>1.464</td>
<td>1.511</td>
<td>1.544</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.297</td>
<td>1.439</td>
<td>1.523</td>
<td>1.578</td>
<td>1.617</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>1.322</td>
<td>1.481</td>
<td>1.575</td>
<td>1.638</td>
<td>1.683</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>1.344</td>
<td>1.518</td>
<td>1.623</td>
<td>1.694</td>
<td>1.744</td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>1.364</td>
<td>1.552</td>
<td>1.668</td>
<td>1.745</td>
<td>1.801</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.382</td>
<td>1.584</td>
<td>1.708</td>
<td>1.793</td>
<td>1.854</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>1.398</td>
<td>1.612</td>
<td>1.746</td>
<td>1.837</td>
<td>1.904</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>1.413</td>
<td>1.639</td>
<td>1.781</td>
<td>1.879</td>
<td>1.950</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>1.427</td>
<td>1.664</td>
<td>1.814</td>
<td>1.918</td>
<td>1.995</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>1.440</td>
<td>1.687</td>
<td>1.845</td>
<td>1.955</td>
<td>2.036</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1.451</td>
<td>1.708</td>
<td>1.875</td>
<td>1.991</td>
<td>2.076</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>1.462</td>
<td>1.729</td>
<td>1.902</td>
<td>2.024</td>
<td>2.114</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>1.473</td>
<td>1.748</td>
<td>1.928</td>
<td>2.056</td>
<td>2.150</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>1.482</td>
<td>1.766</td>
<td>1.953</td>
<td>2.086</td>
<td>2.185</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>1.491</td>
<td>1.784</td>
<td>1.977</td>
<td>2.115</td>
<td>2.218</td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td>1.500</td>
<td>1.800</td>
<td>2.000</td>
<td>2.143</td>
<td>2.250</td>
<td></td>
</tr>
</tbody>
</table>
Fig. (4): Maximum Weft Density (yarns/cm) in Plain and Floated Weaves in Terms of Yarn Diameter.

Fig. (5): Weave Value of Weft in Extended Weaves in Terms of Diameter Ratio $\frac{d_1}{d_2}$ and Warp Average Float F_w.
Table (5): Maximum Weft Density of Extended Woven Fabric (yarns/cm) in Terms of Ratio of Yarn Diameters \((d_1/d_2) \) and Warp Average Float \(F_1 \) (Weft Diameter = 0.03 cm)

<table>
<thead>
<tr>
<th>Diameter Ratio (d_1/d_2)</th>
<th>Warp Average Float</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0.2</td>
<td>28.17</td>
</tr>
<tr>
<td>0.4</td>
<td>24.85</td>
</tr>
<tr>
<td>0.6</td>
<td>22.47</td>
</tr>
<tr>
<td>0.8</td>
<td>20.67</td>
</tr>
<tr>
<td>1.0</td>
<td>19.25</td>
</tr>
<tr>
<td>1.2</td>
<td>18.08</td>
</tr>
<tr>
<td>1.4</td>
<td>17.10</td>
</tr>
<tr>
<td>1.6</td>
<td>16.27</td>
</tr>
<tr>
<td>1.8</td>
<td>15.54</td>
</tr>
<tr>
<td>2.0</td>
<td>14.91</td>
</tr>
<tr>
<td>2.2</td>
<td>14.34</td>
</tr>
<tr>
<td>2.4</td>
<td>13.84</td>
</tr>
<tr>
<td>2.6</td>
<td>13.39</td>
</tr>
<tr>
<td>2.8</td>
<td>12.97</td>
</tr>
<tr>
<td>3.0</td>
<td>12.60</td>
</tr>
<tr>
<td>3.2</td>
<td>12.25</td>
</tr>
<tr>
<td>3.4</td>
<td>11.94</td>
</tr>
<tr>
<td>3.6</td>
<td>11.64</td>
</tr>
<tr>
<td>3.8</td>
<td>11.37</td>
</tr>
<tr>
<td>4.0</td>
<td>11.11</td>
</tr>
</tbody>
</table>
Fig. (6) : Maximum Weft Density (yarns/cm) in Extended Weave
in Terms of Diameter Ratio \(\frac{d_w}{d_i} \) and Warp Average Float \(F_i \)
(Weft Diameter = 0.03 cm)
IX. Conclusion:

Because of the importance of weavability limit many trials have been carried out. Some trials were theoretical and others were experimental. Many expressions were obtained but they were neither accurate nor general. The fabric designer in the weaving shed needs general and easy expressions to determine the maximum yarn density which can be achieved. Three models of weave structure are presented in this paper: plain weave, floated weave, and extended weave. Only yarn diameters are needed to determine maximum yarn density in either plain or floated woven fabric. For extended weaves, yarn average float is also needed. Warp maximum sett depends on weft average float, and weft maximum sett depends on warp average float. For extended weave there is a value called weave value. Weave value is the ratio between maximum sett of the extended woven fabric and the maximum sett of the corresponding plain or floated woven fabric. Weave value could be determined for some extended weaves but in this paper weave value can be determined for any extended weave. Many quantities depending on yarn maximum sett could be expressed in terms of yarn diameters and yarn average float.

X. References:

