INFLUENCE OF EGYPTIAN COTTON FIBER PROPERTIES AND MECHANICAL PROCESSING ON NEP FORMATION

By

Dr. Eng. Rizk El-Bealy
Assoc. Prof. Textile Department
Faculty of Eng., Mansoura Univ.

ABSTRACT: The aim of the present work is to study the effect of several variables on the ultimate level of neps in card web and ring-spun yarn. The variables chosen included two main factors: fiber properties and mechanical treatment in spinning preparations. The experiments were carried out by running each Egyptian cotton fibers in the test and varying mechanical processing such as blower stages, doffer and take-in speeds, trashmaster, flats setting and card population "points / in". All test treatments were processed into card 40/1 yarn. Under fiber characteristics, micronaire value and fiber buckling coefficient affect significantly nep formation, within blower process neps can be created, while at carding machine more neps may be removed than created.

1. INTRODUCTION:

Neps in cotton have been a major problem in textile processing for many years (1). The term nep is applied to various physical phenomenon that occur in card web, yarn and cloth made from cotton fibers (2). In general, neps are associated with poor yarn and fabric appearance and have an effect on uniformity and dyeing quality (3,4).

Several studies have been conducted on nep phenomenon in terms of:

i) Studies of the physical definitions and description of neps:

According to ASTM (5) a nep is one or more fibers occurring in a tangled and unorganized mass. Pearson (1) reports that at least fifteen different kinds of neps can be found in raw stock. Lord (6) described five different kinds of neps found in cotton fabrics. Both of these discisions involve only tangled fibers, for the most part immature or dead. Fiber entanglements accompanying seed coat fragments are included as neps by several authors including Frager and et al. (7). It further states that "Seed coat and mote fragments with lint or fuzz fibers attached are not neps". Bogdan's extensive review of literature (3) published in 1976 concerning neps illustrated the complexity of the problem of differentiating the types of neps and the particular causes of each.

ii) Studies of the dependence of nep formation on several factors:
Neps are formed during boll development, harvesting, handling, ginning and during yarn manufacturing process[8,9]. Entanglements of cotton fibers are probably caused by mechanical manipulation of the cotton during processing and they can be called "mechanical neps". Others are due to extraneous plant material and can be referred to as "biological neps"[10]. Anthony[9] investigated the effect of varieties harvesting practices such as timing of harvest, maturity level at harvest, date of harvest and machine adjustments and ginning techniques on the nep content. Leonard[11] showed that chemical treatment of seed cotton prior to ginning affects the number of neps in both saw and roller ginned lint. Other researchers confirmed that low nep count in ginned lint is typical for roll ginned cotton when compared to the count for saw ginned cotton[12]. Researchers examined the effect of cotton moisture content, processing rate and gin machinery type on total nep formation in ginning system[13].

Normal ginning conditions, three tower dryers 65c and two lint cleaner, produced high card web neps than moderate ginning conditions, using no heat and only lint cleaner, at the same carding machine[14].

Cotton variety, location and season significantly affect the number of neps in cotton yarn[15]. The effect of variety on nep content being the greatest of the three variables. There is a significant general tendency for the number of neps in yarn to increase as fiber length increases, fiber weight per inch decreases, percentage of thin walled fibers increases and the percentage of large motes increases, but a large part of the varietal variance in nepness remains unexplained.

iii) Studies on nep determination methods:

The nep determination has been mentioned in several textile literature. Hebert et al[16] investigated the neps obtained from different stages of cotton processing “ginning, spinning, weaving and dyeing” using light microscope. Those from stock and ginned samples were extracted from the classer’s boards used in the one gram nep counting[17] test. Yarn neps were obtained by simply unwinding the yarns and fabric neps were picked from the surface.

Harrison and Bargeron[18] comparing four methods of nep determination: card web neps, document folder with template-defined viewing area, the ASTM[16] nep test machine resembles a miniature card and yarn neps using Later tester II model B.

Instruments, nepometer and RM 1100 nep tester were used for measuring the tendency of cotton fibers to nep formation. Also, a photoelectric scanning device was used for the determination of nepness in card web.

In the present study, the work intended to explain several cotton processing conditions that affect nep formation. The experiments were carried out, under industrial conditions, to investigate:

i) Relationship of neps to fiber parameters: fiber fineness, buckling coefficient and card silver weight.

ii) Effect of spinning preparations (opening-cleaning and carding conditions): blowroom sequence, doffer speed, take-in speed, trashmaster, carding populations (points/in²), flats setting on card web neps.

iii) The relationship between card web neps and yarn neps.

2. EXPERIMENTAL WORK:

2.1 Material used:

The experiments were carried out on three types of Egyptian cotton fibers. Table[11] shows the main fiber characteristics, in addition, all of these types of cotton fibers are free from honey-dew or other sticky contamination.
Table (2.1)

<table>
<thead>
<tr>
<th>Fiber property</th>
<th>Egyptian Cotton Fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Giza 81</td>
</tr>
<tr>
<td>2.5% span length (mm)</td>
<td>30.7</td>
</tr>
<tr>
<td>Micronaire reading (µg/inch)</td>
<td>4.3</td>
</tr>
<tr>
<td>Maturity (%)</td>
<td>86.0</td>
</tr>
<tr>
<td>Non-Lint (%)</td>
<td>3.9</td>
</tr>
</tbody>
</table>

2.2 Construction Details of Experiments:

2.2.1 Effect of material parameters:

To study the effect of material parameters on nep formation, three varieties of Egyptian cotton fibers differ in fiber properties length's and micronaire values were processed through one card at two levels of doffer speed for producing card sliver "3.6, 4.3 and 5.0 gram/inch" while the other machine parameters were kept constant as shown in Table (2.1).

Table (2.2)

<table>
<thead>
<tr>
<th>Cotton type</th>
<th>Giza 31</th>
<th>Giza 81</th>
<th>Giza 75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micronaire Value (µg/in²)</td>
<td>3.8</td>
<td>4.3</td>
<td>4.8</td>
</tr>
<tr>
<td>doffer speed (r.p.m)</td>
<td>9.5 25</td>
<td>10.5 26</td>
<td>9.5 28</td>
</tr>
<tr>
<td>Card sliver weight (g/m)</td>
<td>x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>x x x x x x x x x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cylinder speed 265 r.p.m, Taker-in speed 857 r.p.m and flat speed 7.8 cm/min

2.2.2 Effect of Mechanical Treatment:

1) To study the effect of opening-cleaning stages on the tendency of cotton nep formation two types of Egyptian cotton fibers "Giza 81 and Giza 31" were processed through two opening lines as shown in Table (2.2).

Table (2.3)

<table>
<thead>
<tr>
<th>Cotton type</th>
<th>Opening Line</th>
<th>Machine Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giza 31</td>
<td>Line "B"</td>
<td>Blending bale opener, Axi-flow, H. Feeder, porcupine beater (2), Automixer, kirshner, chute feed</td>
</tr>
</tbody>
</table>

ii) To study the effect of carding conditions on nep formation:

The cotton fibers were carded on a high production carding m/c for producing card sliver 0.13 Ne and the running conditions were set as shown in Tables (2.4), (2.5), (2.6), (2.7), (2.8).
Table (2.4)

<table>
<thead>
<tr>
<th>Taker-in speed (r.p.m.)</th>
<th>doffer speed (r.p.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>22 26 30 34</td>
</tr>
<tr>
<td>750</td>
<td>x x x x</td>
</tr>
<tr>
<td>850</td>
<td>x x x x</td>
</tr>
<tr>
<td>950</td>
<td>x x x x</td>
</tr>
<tr>
<td>1100</td>
<td>x x x x</td>
</tr>
</tbody>
</table>

Table (2.5)

<table>
<thead>
<tr>
<th>M/C</th>
<th>doffer</th>
<th>flat</th>
<th>Taker-in speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>speed</td>
<td>speed</td>
<td>(r.p.m.)</td>
</tr>
<tr>
<td></td>
<td>(r.p.m.)</td>
<td>(Cm/min)</td>
<td>750 863 990 1100</td>
</tr>
<tr>
<td>with bad condition</td>
<td>29 10.3</td>
<td>x x x x</td>
<td></td>
</tr>
<tr>
<td>with good condition</td>
<td>10 7.8</td>
<td>x x x x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26 7.8</td>
<td>x x x x</td>
<td></td>
</tr>
</tbody>
</table>

Table (2.6)

<table>
<thead>
<tr>
<th>Carding M/C</th>
<th>doffer speed (r.p.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low speed high speed</td>
</tr>
<tr>
<td></td>
<td>(8 r.p.m.) (16 r.p.m.)</td>
</tr>
<tr>
<td>with trash master</td>
<td>x x</td>
</tr>
<tr>
<td>without " "</td>
<td>x x</td>
</tr>
</tbody>
</table>

Table (2.7)

<table>
<thead>
<tr>
<th>Card size (Ne)</th>
<th>flat setting (in²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.009 0.012 0.015</td>
</tr>
<tr>
<td>0.12</td>
<td>x x x</td>
</tr>
<tr>
<td>0.14</td>
<td>x x x</td>
</tr>
</tbody>
</table>

Table (2.8)

<table>
<thead>
<tr>
<th>Carding points/in²</th>
<th>Egyptian cotton fibers</th>
</tr>
</thead>
<tbody>
<tr>
<td>cloth type</td>
<td>flats cyl. doffer Giza 81 Giza 31</td>
</tr>
<tr>
<td></td>
<td>doffer sp. doffer sp. doffer sp.</td>
</tr>
<tr>
<td></td>
<td>r.p.m. 8 26 r.p.m. 26 r.p.m.</td>
</tr>
<tr>
<td>A 379 795 388</td>
<td>x x x</td>
</tr>
<tr>
<td>B 380 780 367</td>
<td>- - x</td>
</tr>
<tr>
<td>C 420 806 358</td>
<td>x x x</td>
</tr>
<tr>
<td>D 450 865 340</td>
<td>x x x</td>
</tr>
</tbody>
</table>

Two drawing processes were used and the samples spun into yarn count Ne 40 (15 tex) with twist multiplier ø 4.2 on spinomatic with 880 spindle, ring diameter ø 48 mm and using S.K.P spendulum arm PK 223.

2.3 Measurements:

Card web neps: The resulting web was placed on standard black velvet grading boards and the number of neps counted with the aid of low magnification. Each experiment is the average of 20 reading and the average number of neps per inch square of card web is calculated.

Yarn neps: were determined using Uster tester II, the results are neps per 1000 meter of yarn.

3. RESULTS AND DISCUSSION:

3.1 Relationship between fiber properties and nep formation

In terms of fiber fineness: the relationship between card web neps and micronaire
values is plotted graphically in Fig. (1.1) and (1.2) for two levels of carding production, three levels of card sliver weight (g/m). It can be seen that, the finer cotton tends to more frequently and easier than coarser fibers. Also, the results indicate that a significant differences in nep count appeared among these varieties, "Giza 31, Giza 81 and Giza 70" that was expected since these differed in micronaire values. The same trend has been observed either with varying the carding rate, from 10.5 r.p.m to 26 r.p.m, or/and sliver weight (g/m), 3.6 to 5 g/m. This is in agreement with the results obtained by Hebert (10). pointed out the immature fibers were a major cause of nep formation in cotton process.

The statistical results show a strong correlation between neps / 100 in² and fiber fineness (μg/inch). The values of correlation coefficient are very high ranging between r = 0.799 and 0.883 for low and high carding rate respectively as shown in Fig. 3.

In terms of the combined effect of fiber fineness and fiber length as component of the bending modulus on nep formation is shown in Fig. (3). It is evident from the previous studies (17,21) that processing of fibers tends to produce neps through a stress build up / sudden release mechanism, which includes buckling of the fiber length (17). Also, stated that, the coefficient of buckling based on Euler parameter is correlated highly with standard fiber properties: micronaire which represents fineness as well as maturity and length. This factor was expressed as (Li/μ)^4 where Li is the 2.5% stuff length of fiber and μ is the micronaire value. These components of the bending modulus determine the flexural rigidity of fibers.

The relationship of card web neps to coefficient of buckling (Li/μ)^4 is shown in Fig. (3). The linear correlation coefficients 0.78-0.85 significant at 0.95 level, indicate the buckling due to sudden-relase in fiber processing is one of the parameters that cause nep formation.

In terms of card sliver weights, the effects of cotton type and card sliver weight on card web neps appear in Fig. (4). The graph shows a higher nep count associated with Giza 31 cotton fiber than those for Giza 81 and Giza 70 respectively. It is clear that there were more neps in the 4.9 g/m than those of 4.2 g/m and 3.6 g/m carded sliver. Also, a slight increase in nep count in card web neps has been observed for 3.6 g/m than those of 4.9 g/m card sliver. This is in agreement with the earlier studies. (18).

3.2 Relationship of mechanical treatment to nep formation.

The following graphs, Fig. (5), show the number of neps per gram for all blowroom stages and carding process. It has been found that the nep count increases considerably in processing from bale through blowroom machines line "A" for Giza 31 and Line "B" : cotton Giza 81. Where it reaches a maximum value at last opener, then decreases in carding depending on card m/c parameters.

Fig. (6.1) and (6.2) show the effect of doffer speed (r.p.m) and taker-in speed on card web neps. The results indicate that as the doffer speed increases the nep count increases. This trend has been observed for all different levels of taker-in speeds.

Card taker-in speeds of 750, 865, 950 and 1100 r.p.m were used in carding Giza cotton fibers. Generally, as shown in Fig. (7.1) taker-in speed did not affect neps in card web. Also, as shown in Fig. (7.2), if the card is in a good condition the neps m be reduced as low as 48-70 neps per gram of fibers for low and high doffer speed respectively. While, if the card is in poor condition, there are few neps taken-out, thus giving a w with a higher level of neps per gram of fibers.

Fig. (6.2) shows the effect of doffer speed, as carding m/c equipped with or witho trash master, upon card web neps. The results indicate that, a drop of card web neps we
achieved as trash master applied to carding machine. Also, the same effect of doffer speed has been observed, the higher speed causes more neps. Hughy(20) pointed out neps in the card web that has been flattened by crusher rolls showed up more plainly on the nep board. Consequently, crusher rolls improved spinning performance and yarn quality including neps/914 meter.

Fig. (8) shows the effect of card flat setting on card web nep formation. Flat setting of 0.009, 0.012 and 0.013 inch were used in carding Giza 81 cotton fiber at speed 25 r.p.m. It is noticed that, for 0.009 and 0.012 inch settings, card web neps were low and at the same level. For wider flat setting 0.013 inch the number of neps was significantly higher than the other two closer settings. Control of these fibers is lost at this point and increased nep formation occurs. The industrial practice of increasing the flat setting reduces cylinder load further reduces the carding action needed for cotton fibers, causing more neps and deterioration of quality (18).

Fig. (9) shows the effect of population, points/inch^2, on card web nep formation for two Egyptian cotton fibers. It has been found that, for Giza 31 increasing the number of points/inch^2 has more significant effect upon reducing carding web neps. Also, at higher doffer speed, the same trend has been noticed for Giza 81, than those obtained at lower rate. This is in agreement with the earlier investigation (19). Numerous trials have been made to find the effect of increasing cylinder, doffer and take-in population by the use of fine-rib wire upon carding performance. The required carding power was achieved as fine wire was applied to the main cylinder while for doffer and take-in the results are not likely to indicate that there is significant improvement in carding performance.

3.3 Relationship of card web neps to yarn neps:
Card web neps are important because of the high correlation between card neps/100 inch^2 and yarn neps/1000 m as shown in Fig. (10.1) and (10.2). The values of correlation coefficient are very high ranging between r = 0.83 and r = 0.91 for fiber characteristics and mechanical treatment through carding respectively. Thus, whatever the causes the card web neps can also be a contributing factor in causing yarn neps.

4. CONCLUSIONS:
The present study permits the following conclusions to be drawn:
1- Mechanical treatment of cotton fibers through spinning preparations causes more variation in card web neps as follows:
 i) Blowroom stages affect significantly nep formation. The number of neps/gm increases from machine to machine in the blowroom, where it reaches a maximum level then decreases in carding
 ii) The card web neps level depends on card conditions as the following:
 - It has been found that increasing the carding population (points/in^2) caused a significant effect on removal of neps.
 - Trash master at carding machine produced low card web neps/100 in^2 and lower yarn neps/1000 m.
 - As the carding machine is in good condition, which is obtained by proper adjusting and maintenance, there are more neps taken-out.
 - Increasing the flat setting causing more neps and deterioration of yarn quality.
 - Higher doffer speed (r.p.m) increases the nep content.
 - Card take-in speeds r.p.m used did not affect significantly neps in the card web.

2- In term of material variables, the existing correlation between nep and fiber characteristics is highly significant.
Cotton fibers with lower micronaire value "µg/inch" Giza 31, tend to nep more frequently and easier than those with high micronaire values, Giza 81 and Giza 73. The correlation coefficient 'r' varies between -0.79 and -0.83.

- Fiber buckling coefficient (L²/µ²) which is based on length at 2.5% and fiber fineness, affect significantly the card web nepes. A linear coefficient of correlation is 0.78 between buckling coefficient and nepes/100 in².
- There were affects card web nepes with 40 gm/m² than with 3.6 gm/m² card sliver weight.

- Card web nepes plays an important role in the final yarn quality. It is clear that whatever the causes the card web nepes can be a contributing factor in causing yarn nepes. The statistical analysis yielded a very high correlation between card web nepes and yarn nepes, the coefficients r=0.88 and 0.91 for fiber parameters and mechanical processing at carding respectively.

ACKNOWLEDGEMENT:

The author wishes to express his thanks to Eng. M. Taliat for preparation and processing of the yarns. Also thanks to Eng. El-Sammanoudy Head of spinning section in Misr El-Mehall spinning and weaving company and all the technical staff for their willing cooperation.

REFERENCES:

5) ASTM Standards on Textile materials, American Society for testing material, Philadelphia, 1947, part 33, p. 27.

Fig. (1) Effect of Micronaire Reading on Card Web Area / 100 in²

Fig. (1.1) Doffer Speed 10.5 r.p.m

Fig. (1.2) Doffer Speed 26 r.p.m

Fig. (2) Correlation Coefficients Between Card Web Area and Micronaire Reading

Doffer Speed
- 26 r.p.m
- 10.5 r.p.m

Correlation Coefficients
- r = 0.863
- r = 0.799

Fig. (3) Correlation Coefficients Between Card Web Area and Fiber Buckling Coefficient

Buckling Coefficient (L² / μ²)
Fig. (4.1) Effect of Card Silver Weight (gm/m²) and Cotton Fibres on Card Webs Weight

Fig. (4.2) at Higher Doffer Speed

Fig. (5) Effect of Blowroom Machine Sequence on Meal Per Gram of Cotton Fibres
Fig. (6.2) Graph showing water speed vs. Card Web Rear/100 in.
- Without Trash water
- With Trash water

Fig. (7.2) Graphs showing Card Web Rear/100 in. vs. Take-in Speed
- Chart with different conditions:
 - (1) 25 r.p.m.
 - (2) 35 r.p.m.

Fig. (6.1) Graph showing Card Web Rear/100 in. vs. Doffer Speed
- Take-in Speed: 250, 550, 950, 1100 r.p.m.

Fig. (7.1) Graph showing Card Web Rear/100 in. vs. Doffer Speed
- Take-in Speed: 75, 105, 125, 155 r.p.m.

Fig. (6) Effect of Doffer Speed with varying Take-in Speed and Trash water
- on Card Web Rear/100 in.

Fig. (7) Effect of Take-in Speed on Card Web Rear
Fig. (9) Effect of Flat Setting on Cast Web Reps/100 in²

Fig. (10) Effect of Casting Population (pellets/lb²) on Cast Reps/100 in²

Fig. (10.1) Correlation Coefficient Between Tarp Reps/1000 m and Cast Reps/100 in²

Fig. (10.2)