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AN ADAPTIVE ALGORITHM FOR SEQUENTTAL

ADAPTIVE PREDICTIVE CODING OF SPEECH SIGNALS

FAYEZ W. ZAKI and RASHEED M. EL-AWADY ™

ABSTRACT:
Yarious methods have been proposed for adapting the coefficients

of digital lattice filters used in linear predictive speech coding systems
The most common of these is the stage-by-stage algorithm based on the least
mean square {(LMS))method.

In this paper a new sequential adaptive algorithm referred to as "end-~
point” method is introduced. A comparison study between the stage-by-stage
and the "end=-point" has been carried out by computer simulation. The pre-
liminary results showed that the “end=-point" provides higher convergence
rate and less misadjustment in mean-square error over the stage-by-stage
method.

INTRODUCTIOQN:

The use of linear predicfion for spectral analysis and vocal tract
estimation has been widely accepted in the speech processing field. Although
the Autocorrelation and Covariance methods[ 1 ]are well established in this
area, their computational complexity has led to a search for alternative
methods which may be more convenient for real-time applications., These
involve the adaptation of the coefficients of a non-recursive digital filter
on a sample-by-sample basis, il.e, & small adjustment is made each time a new
speech sample is obtained. The aim is to keep the filter cutput minimised in
mean-square value and spectrally flat so that low=bit rate encoding techniques
can be adopted for efficient transmission. Since the inverse of the adaptive
filter is used to reconstruct the original speech at the receiver, a further
requerment is that this inverse filter is stable,i.e, that the adapiive

filter is minimum phase.
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The most straight forward sample~by-sample adaptation method is probably
the LMS algorithm [2 ]using a ladder or 'tapped delay line' type of digital
filter structure. However, this method can lead to difficulties with respect
t¢ the minimum phase requrement. Alternative methods based on lattice type
structure have been proposed [3,4.5] . Lattice filters of the type shown in
Fig. 1 have the important property that minimum phase is guaranteed when all
the multiplier coefficients k are less than one in modulus, and that the
forward and backward errors ( £, + b, for i= 1,2,3,20400..M-1) are all mini-
mised in mean square value when the output e(n) is similarly minimised. The
forward and the backward errors ai each stage of the lattice filter are given
by

1l

fi(n) fi_l(n) + kR bi_l(n)

ceenes (1)
bi(n) = bi_l(n-l) + K, fi_l(n-l)

Application of the noisy '"steepest descent' gradient method used in the
LMS algorithm[ 2 ], to sequentially minimise the mean square value of the
output e{n) of an mth order lattice filter requires the vector X of the lattice
coefficients to be updated, on receipt of esach new speech sample, by the
formula

e R R CI ) R (2)
7
where a(n) 2 e(n) deln) - e§22|-l.ojglgggl_] (3
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G(n) is the gradient vector evaluated at time n and Jp is a ‘step size' as
defined in[ 2] . Calculation of G{n) is not as straightforward as for ladder-

type filters. From Fig. 1, the output e(n) is given in terms of the input 5(n. as:

M

e{(n) = S(n) + E ki by _q(n) cevean(B)
i=1

Hence, as all signals bi with '17/,j are dependent of kj t
i

= e(n) 2 bi_l(n)
22w > o 2 )
i Ok -

The evaluation of G{n) by equation (5) for each speech sample is clearly

impractical in computational terms, especially as the calculation should involve
the correction of the signals bi(n) after each adjustement to X.
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A true steepest descent approach is therefore not feasible, Altermative
methods [3 5]aim to minimise Eie(n) { indirectly, on a stage-by-stage basis,
by minimising the expectations of b, (n) and £, (n) at each stage of the
filter. For the lattice filter shown in Fig. 1, EXb (n) 5 E if (n) i
for all i, and hence it suffices to minimise jfi(n)zifor each stage by the
nolsy steepest descent method, i.e, at each stage i

ki(nﬂj - ki(n) /‘s%?}{' ( fi(n)z)
. RN ()
k,( ) %/usfi\n) bi_l(n)

where /p; is the ith step size for the stage-by-stage method.

As an adaptive algorithm, equation (6, is as convenient for the lattice
as equation (2) is for the ladder . The aim of this paper is to discuss some
of the disadvantages of this stage-by-stage method and to compare it with an
equally convenient alternative, referred to as the " end~point " method.

END-POINT UPDATING:
The end-point adaptation,method , originalliy proposed by Zaki and Cheetham

[6] is to apply equation (2) with the gradient vector G(n) taken to be

G(n) = [bo(n) bl(n; ......... h-L( n) ] ........ (7)

Comparing equation (7) with equation (6) shows the end-point method to be
equivalent in computational complexity to the stage-by-stage method. Although
not true steepest descent, the end-pcoint method may be justified as a means

of updating X in such a way that e(njz as calculated from equation (4) assu-
ming fixed bi samples, is reduced for the current input sample. The dependence
of the bi signale on K is disregarded since they are not recalculated during

the adaptation process each time K is updated.

EXPERIMENTAL RESULTS:

A series of experiments was carried out by simulation on a 1906s computer

to investigate the convergence behaviour of both stage-by-stage and end-point

updating algorithms for stationary input signals. As shown in Pig.2, a coloured

noise is generated by exciting a fixed all=-pole recursive filter with Gaussian

noise of zero mean and unit variance. The output from the all-pole fixed filter
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was passed through the adaptive lattice filter whose coefficients were set
initially to zero. The adaptive filter was allowed to update its coefficients

on a sample-by-sample tasis for a periode of 5000 samples., After each block of
25 samples the current set of adaptive filter coefficients was transferred to

a non-adaptive filter {copy filter). The same coloured noise as that exciting
the adaptive filter was passed through this copy filter for 200 samples in order
to produce an estimate of E!e(n)zl . Ensemble average learning curves which are
obtained from 25 individual learning curves are shown in Fig. 3. The optimum
value of the mean-square error, as given by the level of the average power of
the Gaussian noise is alsc indicated. For convenience of presentation, the values
of the mean-square error and the optimum mean-square error are all normalised to
the mean=-square value of the output from the fixed filter.

From Fig.3, it can be seen that although the rate of convergence for botin
methods 1s roughly the same, the misadjustment obtained after the learning
curves approached a constant level (90 iteration), was found to be 51.76% and
6.67% for stage-by-stage and end=-point respectively. To explain this higher
misad justment from stage-by-stage the coefficient tracking for both methods was
monitored during adaptation. Fig. 4, shows the sample-by-sample coefficient
tracking capability for both methods after 2000 samples from the starting point.
It can be seen that the sample-by-sample variations in the coefficients obtained
from stage-by-stage are much higher than the variations of the coefficients
obtained from the end-point method after equilibrium had been approached.

In a different comparison study, the first experiment was repeated using
the same fixed value of u for end-point and a vector of different values of Ms
for each stage of the lattice in a stage-by-stage algorithm. Fig. 5, shows the

0

ensemble average learning curves for both methods and the corresponding values

Of‘/p used. It can be seen nere that the stage-by-stage updating algorithm

requires as many as 170 iteration to give similar misad justment as the end-point

method after 90U iteration.

CONCLUSION:

I'he end=-point updating algorithm has been demonstrated as being superior
to the stage-by-stage in a series of experiments.
1- When values Ofl/” are set to equalise the rate of convergence for bvoth methods,
a)the end-point performs better than the stage-by-stage since the latter
results in a higher excess mean-square error once convergence is reached.
bJthe variation in the coefficients around their equilibrium is much higher

for stage~by-stage than for the end-point.
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2= When values of_/n are set to equalise the misad justmsnt, the rate of conver-
gence of the end-point algorithm far exceeds the rate of convergence of the
stage-by-etage algorithm.
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Fig. 1 Lattice Structure Prediction Filter Of Order K.
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Fig. 2 Block Diagram For The bhxperimental Study.
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