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I. INTRODUCTION 

 Global Navigation Satellite System (GNSS) is 

an absolute positioning technique where the user 

receives transmitted data from at least four GNSS  

satellites to determine the position related to a fixed 

coordinate frame [1]. However, GNSS signals may be 

subjected to different error types that must be eliminated or 
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modeled to achieve a reliable solution. The error sources are 

satellite, receivers, and propagation media biases [2]. The 

GNSS carrier phase observation is described as the fractional 

beat phase (the difference between the phase of the satellite 

transmitted carrier wave and the phase of the receiver-

generated replica signal), and an integer counter is then 

initialized [2]. During the tracking of the satellite, the counter 

is incremented by one, whenever the accumulated phase 

changes from zero to 2 where at a given epoch, the observed 

phase is the sum of the fractional phase and the previously 

mentioned integer counter [3]. The initial integer number of 

complete cycles N (integer ambiguity) between the satellite 

and the receiver is unknown and remains constant, as long as 

no loss of the signal lock occurs, i.e., no cycle slips occur. The 

integer counter is re-initialized when cycle slips that cause a 

sudden jump (change) in the instantaneous accumulated phase 

by an integer number of cycles occur; this sudden jump is 

called a cycle slip. When plotting the measured phase versus 

time, a smooth curve with some noise should be obtained 

unless a cycle slip occurs (i.e., there is a sudden jump in the 
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Abstract— Global Navigation Satellite Systems (GNSSs) are used in many 

navigation and positioning applications. Unfortunately, a GNSS signal may 

suffer from some errors, such as cycle slips, which deteriorate the positioning 

solution. A cycle slip is defined as a sudden jump by an integer number of cycles 

in the GNSS carrier phase observations. Signal blockage or/and high 

troposphere activities are the most common causes for GNSSs’ cycle slips. 

Therefore, cycle slips should be detected and corrected to determine reliable 

positioning estimations. A new approach for cycle slip detection and repair is 

proposed based on a master-rover phase-difference with a deep Long Short-

Term Memory (LSTM) neural network model; our SlipNet model can classify 

defective data where a cycle slip has occurred and then predict the exact epoch 

where the cycle slip(s) occurred. The proposed SlipNet network would be the 

first end-to-end learning framework to solve the integer ambiguity problem in 

GNSS measurements with high performance results, %99.7 detection and 

localization accuracy, and 0.045 MAE for slip estimation and recovery. These 

results are on par with the latest classical cycle slip detection methods of cycle 

slip detection and correction. 
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observations at the epoch of cycle slip occurrence), as shown 

in Fig. 1. 

 

Fig. 1. GNSS cycle slip 

 

A cycle slip affects the range between the satellite and the 

user receiver; thus, it affects the accuracy of the derived user 

position and, therefore, it should be detected and estimated. 

The first stage of cycle slip detection and correction is that of 

creating a test function, a slowly time-varying function that 

combines the code and/or phase observations at a single 

receiver or between different receivers. Techniques were 

applied to avoid cycle slip occurrence, such as increasing the 

satellites mask angle. For low satellite mask angle, the GNSS 

signal path is longer through the atmosphere. This leads to a 

low Signal to Noise Ratio (SNR), which may cause multipath 

or/and cycle slip. Detecting of the real cycle slip in such 

situation is very hard because of the contamination of the 

signal with noise [4]. 
 

II. RELATED WORKS 

There are several conventional approaches for GNSS cycle 

slip detection and repair as shown in Fig. 2  

 

 

Fig. 2.  Different approaches for GNSS cycle slip detection and 

repair 
 

Time differencing technique is used for GNSS cycle slip 

detection and repair, where GNSS Observations are subtracted 

between two successive epochs to reduce or eliminate some 

biases [5]; any data discontinuities (i.e., a sudden jump for the 

test function with time, due to the existence of the cycle slips) 

will be amplified in higher order differences and, thus, enhance 

the cycle slip detection process [2]. This approach acts as a 

subtractive filter that passes the low frequencies (the ordinary 

GNSS signal) while it amplifies the high frequencies 

represented by the slipped cycles [2]. The second approach is 

based on a low-degree polynomial fitting depending on 

different test functions, such as ionospheric residual [6] and 

range residual, which depend on the combination of the carrier 

phase and code observations [7]. The Melbourne–Wübbena 

(M–W) linear combination has been widely applied to cycle 

slip detection [8]. Some researchers, such as [9], used the 

double differences phase observation as a test function and 

modeled by low degree polynomial functions. These 

approaches necessitate the user’s intervention for tuning 

purposes.  

Other approaches propose automated/semi-automated 

techniques for cycle slip detection, such as [10] who developed 

an automated cycle slip detection and repair technique based 

on the Chebyshev polynomial and least-square combination 

scheme.  

Wavelet techniques are used in detecting the GNSS cycle 

slip in frequency domain; [4] proposed a wavelet based 

function to detect cycle slip in the details’ coefficient, where 

the cycle slip amplitude was determined in addition to a 

comparison between the Kalman filter and the wavelet 

approach, which was done based on the phase linear 

combination.. 

Many researchers proposed integrated techniques [11]; 

[12]; [13]; [14]; and [15], such as neural networks and/or 

aiding statistical approaches for cycle slip detection and repair. 

However, these researchers did not focus on the severe noise 

effect on their approaches. 

Kalman filtering is used in different research methods to 

detect cycle slips where the filter predicts the carrier phase 

observations and compare them with the actual observed data. 

A cycle slip is detected when a huge difference between the 

predicted and actual observations is indicated [16]. 

There are other approaches for cycle slip detection that are 

based on Global Positioning System/Inertial Navigation 

System (GPS/INS) integration [17]. Unfortunately, this 

approach is difficult in many applications due to the INS 

installation cost and complexity. 

[18] proposed a geometric free linear combination for 

detecting and fixing the GNSS cycle slips for both Beidou and 

GPS signals, where an improved adaptive Particle Swarm 

Optimization (PSO) algorithm is used for cycle slip fixation. A 

cycle slip detection method for Beidou3 was developed by 

[19] using an elevation-based model to assist the code 

measurement noise, where code-phased combination is used as 

a test quantity.  

An enhanced cycle slip repair approach was proposed by 

[20] using Kalman filter for dual and triple differencing under 

different satellites elevation and ionospheric conditions. [21] 

developed a cycle slip detection based on comparison between 

geometric range and satellite navigation message position, 

through a moving average technique. A new cycle slip 

detection and repair method was proposed using Total Electron 

Content Rate (TECR) through Sudden Increase of 

Pseudorange Error (SIPE) methods [22]. 
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[23] developed a real-time cycle slip detection and repair 

approach under high ionospheric activity for undifferenced 

GPS/BeiDou Satellite System triple-frequency observations 

using a single receiver, while the second order time difference 

approach was used for the code/phase linear combination to 

reduce the ionospheric effect. Different GNSS signal linear 

combination were investigated as test quantities by [24] for 

cycle slip detection and repair.  

A multi-scale singularity detection was developed, 

evaluated, and tested by [25] over GPS Code minus Carrier 

(CmC) and Phase1 minus Phase2 measurements to detect and 

remove, with a good degree of accuracy, cycle slip errors. This 

dataset was collected under two conditions; it was assumed 

that the rover was not in Kinematic mode and that all the data 

were collected with a clear-view during one session only 

(without any obstructions) [25]. 

Another approach used based on modeling the positional 

errors resulting from cycle slips using Artificial Neural 

Networks (ANN) was proposed by [26]. Here, it is concluded 

that the constructed ANNs are capable of modeling the 

positional errors with the five selected parameters. It has been 

clarified that for any of the constructed ANN (Back- 

Propagation (BP)) there were about 160,000 different outputs 

available that were divided into two groups. The first group 

(representing 90% of the available data) was used in 

establishing the ANN, whereas the remaining 10% (about 

16,000 outputs) were used to check the reliability of the 

established ANN. The predicted results have been compared 

between experimental (an experiment to illustrate the 

effectiveness of the proposed algorithm) and the BP model. 

This research work proved that the ANN training model was in 

agreement with the experimental results. However, the amount 

of testing data has been relatively small, and there were no 

measures of accuracy [26]. 

[27] developed an INS/GPS integration method based on 

ANN to fuse uncompensated INS and differential GPS (DGPS) 

positioning and navigation (POS/NAV) measurements. Both 

“Position Update Architecture (PUA)” and “Position and 

Velocity Update Architecture (PVUA)” mechanization have 

shown a superior performance over the conventional 

INS/DGPS integration techniques. In addition, the PUA and 

the PVUA have shown the ability to provide the most stable 

and accurate INS/DGPS solution if compared to other 

techniques, without any time slots prediction of the occurred 

cycle slips. 

A cycle slip detection and repair technique based on dual-

frequency GPS data observed from a single receiver under high 

ionospheric activity was proposed by [28], where a Forward 

and Backward Moving Window Averaging (FBMWA) 

algorithm was used, as well as the Second-Order Time-

Difference Phase Ionospheric Residual (STPIR) algorithm to 

precisely detect cycle slips with the use of only carrier phase 

observations. Unfortunately, STRIP is sensitive to ionospheric 

disturbances and, therefore, the integration of the FBMWA and 

STPIR algorithms allow the cycle slips to be uniquely detected 

and determined, even under high ionospheric activities. 

Although, the occurrence of cycle slips won’t be signified 

when the cycle slips are on L1 and L2 and have the same size 

and same sign, thus, cancelling one another [28]. [29] 

developed a real-time algorithm to detect, determine, and 

validate (one that has been resolved correctly) the cycle slips 

for triple-frequency GPS. The cycle-slip detection was 

implemented by simultaneously applying two geometry-free 

phase combinations to detect more insensitive cycle slips, this 

is applicable for high data rate applications. The cycle-slip 

determination adaptively used the predicted phase data and the 

code data. The LAMBDA technique was applied to search for 

the cycle-slip candidates. This technique includes the 

following attributes: 

1. Cycle-slip detection, which checks the occurrence of 

cycle slips. 

2. Cycle-slip determination, which quantifies the sizes of 

cycle slips. 

3. Cycle-slip validation, which tests whether the cycle 

slips are correctly resolved. 

4. Cycle-slip removal, which removes the cycle slips from 

the phase measurement. 
 

However, the results indicate that the proper performance 

of the cycle-slip detection relies on the slight change of 

ionospheric delay between two adjacent epochs; hence, this 

approach is only valid for the applications with a high data 

rate. In some extreme cases, (for example, during a magnetic 

storm) the detection approach may provide unexpected results. 

Multipath errors will not significantly affect the cycle-slip 

detection, but if the phase noise is high, the sensitivity of the 

cycle-slip detection will be degraded [29]. 

This paper introduces a new end-to-end learning approach 

based on phase-difference with LSTM. This new method of 

architecture has been designed to classify the epoch where a 

cycle slip could occur based on phase measurements, which 

have their own benefits in providing accurate results. 

Subsequently, this new method has the ability to predict the 

cycle slip epoch. Moreover, the actual classified (detected) 

cycle slip(s) phase-difference will be corrected. The simulated 

cycle slips will be added to the original dataset phase-

difference in order to test the classification, prediction, and 

correction models’ accuracy, with the goal of producing noise-

free output measurements without any cycle slip. In this paper, 

two main phase-difference measurements sources are 

presented: one for the master and the other for the rover for 

each satellite. The updated measurements will be evaluated 

based on the simulated cycle slips that will be added to the 

original data which have been obtained from all satellites. 
 

III. LSTM MODEL ARCHITECTURE  

Cycle slip is defined as a sudden discontinuity in the carrier 

phase observation that follows a polynomial trend. The carrier 

phase observation mathematical model [30] is described in 

equation (1), where carrier phase (λϕ) and pseudo-range (ρ) 

measurements, geometrical range (p), dϕ, and dρ represent the 

noise in carrier and code measurements, tropospheric error 
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(dtrop), orbital error (dEphem), satellite and receiver clock errors 

(cdt,cdT), and ionospheric error (dion). 

 

                              
           

(1) 

First, a test quantity is selected for detecting and estimating 

GNSS cycle slip to omit the geometrical range (p) and to 

decrease the time-varying biases through the carrier phase and 

the code observations linear combination at the same 

frequency (e.g., C/A code and phase in L1), or with the carrier 

phase measurements linear combination at a different 

frequency (e.g., carrier phase measurements in both L1 and L2 

frequencies). In this case cycle slip could be easily detected 

where the test quantity has the advantage of being a slow time 

variance [25]. Equation (2) describes the code observation 

mathematical model. 

                             
     

(2) 

The proposed method uses phase-difference as a test 

quantity; however, LSTM is deployed because of its memory 

advantage. LSTM has, by design, the ability to deal with 

correlated sequences of data using memory-keeping gating 

mechanism [31]. 

The constructed deep network architecture consists of 

three separate steps. Therefore, three neural network models 

with three different outputs at each step are determined: 

1. Classification model: 

This model binary-classifies each segment of epochs: five 

epochs per segment are used and determined whether this 

segment contains a cycle slip or not. 

2. Localization model: 

This model determines epochs, those which have been 

affected by the cycle slips and classified by the previous 

model. This model outputs another binary classification, but 

for each single epoch. In case it has been fed by the segments, 

which have been classified by the previous model, this model 

can act as a further filtration for the output from the previous 

model. 

3. Cycle slip estimation model: 

This model estimates a correct phase-difference before the 

cycle slip(s) is (are) added. The output from the localization 

model can be used in conjunction with this model to correct 

the cycle slips in real-time (epoch by epoch). 

Each of these models has some similarities, such as each 

model is based on 1D LSTM network in the famous encoder-

decoder setup that signifies the autoencoder architecture. The 

autoencoder architecture is adopted for its proven usage in 

noise reduction and producing noise-free data. 

As for the two datasets that have been used for training, the 

data have been prepared as n satellites, with five epochs, and 

two channels (L1 and L2), for each master and rover phase 

difference. So, two channels are used: the first channel (L1) 

represents the L1 phase-difference between the master and the 

rover; and the second channel (L2) represents the L2 phase-

difference between the master and the rover. Hence, the LSTM 

model input will be the time-difference of the receivers’ phase-

differences. According to the previous description, the dataset 

will be in the following matrix form as shown in equation (3). 

D = [S ×EP] (3) 

Where S represents the satellites number and EP is the 

number of epochs. For the n satellites, each one will be passed 

individually. So, by substitution in equation (4) 

D = [5 × 1] (4) 

Before adding the noisy data (time-difference 

measurements with simulated cycle slips), it is necessary to 

assure that the original data are noise-free (without any cycle 

slip). So, “Novatel’s Waypoint Precise Positioning Processing 

GrafNav” software has been used to check whether the 

measurements are cycle slip free or not. After that, cycle slips 

will be added among the epochs according to a fixed sequence 

and with a specific range of values, which guarantee that the 

proposed model can generalize a wide range of integer 

ambiguity and sparse distribution of cycle slips (as they 

represent a rare event anomaly). After cycle slip addition, the 

datasets are shuffled and separated into %70 training data and 

30% testing data. Finally, the confusion matrix (precision, 

recall, and f1-score) is used to evaluate the performance of the 

developed model. 

The base model takes the time-difference of the master-

rover phase-difference as an input. This is fed by five epoch 

segments (four time-differenced master-rover phase-difference 

L1/L2), so the classification model can classify and detect the 

cycle slips. Then the classified cycle slips are passed to the 

prediction model to pinpoint the cycle slip epoch(s). In 

parallel, the classified segments with cycle slips are passed to 

cycle slip error estimation model to recover the original time-

differenced master-rover phase-difference values. 

The simulated cycle slips have two important factors: 

 

1. CS_num: The number of added (simulated) cycle slips. 

2. CS_factor: The added cycle slips values. 

So, after testing and experiments, the results show that 

higher CS_num in the training dataset achieves a better 

accuracy, precision, and recall results in the testing stage. 

After cycle slip classification (detection), a pipeline 

technique is applied to enhance the prediction (localization) 

model. The classification output is fed to the prediction model, 

so the cycle slip distribution will be evaluated according to the 

classification results (precision). Now, it is time to correct the 

produced cycle slip(s) and estimate the produced error. 

As mentioned before, the confusion matrix (precision, 

recall, and f1score) is employed to better represent the model 

results’ effect. As cycle slips are rare events, accuracy metric 

from the TensorFlow library would not be very representative 
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of the true value S in our model. The classification, 

localization, and error estimation models are depicted in Fig. 3, 

4, and 5. 

 

Fig. 3.  Classification Model 

 

 

Fig. 4.  Localization Model 

 

 

Fig. 5.  Error Estimation Model 

 

For example, if a single cycle slip per 1,000 epochs 

occurred and the model fails to predict such cycle slip, then the 

accuracy will be equal to “0.999,” when the model in that case 

has no real value to the problem at hand and the recall value of 

“0.0” would be more descriptive of the actual value of the 

model. 

Such scenarios are faced while training and testing 

processes, such as in SlipNet-3 to 5 and SlipNet-35, where 

very few cycle slips in the training dataset have occurred, the 

accuracy metric was not less than “0.999,” where zero true 

positive has been indicated and, subsequently, no value would 

come from the resulting trained model. 

So, in order to have an accuracy metric that represents the 

actual performance of the model, the confusion matrix is used: 

more specifically the true positive, false negative, true 

negative, and false positive quantities for each of the trained 

and tested models. As these quantities might be confusing, the 

description of each test case in the context of cycle slip 

detection is as follows: 

1. True-Negative: The model claimed it is slip-free 

while it actually was slip-free. 

2. False-Positive: The model claimed it has cycle slip 

while it actually was slip-free. 

3. True-Positive: The model claimed it has cycle slip 

while it actually had cycle slip. 

4. False-Negative: The model claimed it slip-free while 

it actually had cycle slip. 
 

As observed, the true negative is the most common case as 

the natural, slip-free epochs usually dominate the phase 

measurements. However, true positives are the most important. 

The reason for this is that true positives represent the actual 

cycle slips detected by the model. To complete the picture of 

how accurate the model is, the ratio between true positives and 

false negatives is used (which are cycle slips the model failed 

to detect) in order to have what is called the recall value. The 

recall metric represents how many cycle slips the model can 

correctly detect of all cycle slips in the test dataset. The false 

positives are also rather important, as they represent how many 

cycle slips are falsely detected by the model. Together with the 

true positives, they represent the expected precision of the 

model. In other words, how much of the model detected cycle 

slips that will go forward into the correction step is actually a 

cycle slip that needs correction. The precision value was used 

to determine the cycle slip ratio in the training and testing 

datasets for subsequent steps, i.e., the localization and cycle 

slip estimation models. 

When dealing with regression network models, like the 

proposed LSTM cycle slip estimation model, the sigmoid non-

linear activation function is removed at the last layer of the 

model, because its purpose is to limit the output in the 

classification models. This is unlike the binary cross-entropy 

loss function used in training the two classification models, 

which minimizes the Mean Absolute Error (MAE) during the 

cycle slip estimation training. 

During training, the hyper-parameters of the training 

procedure were set as follows: 

1. Number of epochs per segment: 

(a) Five epochs (fixed). 

Number of satellites with simulated cycle slips: 

(a) All satellites. 

(b) Decreasingly, from five to one satellite. 

2. Number of epochs between cycle slips: 

(a) 250 (fixed). 

3. Batch size: 

(a) 500 

(b) 100 (in cycle slip estimation model training). 
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4. Epochs: 

(a) 10 

(b) 200 (in cycle slip estimation model training). 

5. Learning rate: 

(a) 0.001(fixed). 

6. Train-Test-split: 

(a) 0.3 (fixed). 

Different batch size and epochs are selected for the cycle 

slip estimation model training, to address the regression 

problem and preferred method of training longer on smaller 

batch sizes. Hence, in this way the model can generalize better 

on data it has never seen before and achieve a better MAE. 

IV. EXPERIMENTAL RESULTS  

Two datasets of different sources are used to train the 

proposed network; both datasets are similar in collection 

conditions. These were collected where the rover was fixed 

with a clear sky and a moderate baseline. The first dataset 

comprised more satellite phase measurements over the 

second dataset, which comprised more overall epochs for the 

satellite readings. However, the first dataset was collected in 

a different globe hemisphere than the second dataset, this 

group had a different set of satellite measurements, which 

was considered a benefit for the developed network 

architecture, as these measurements could easily be used for 

other datasets. 

As shown in Tables 1 and 2, CS_factor within the range of 1, 

6 has the least f1-score in both datasets. While training on the 

first dataset within this CS_factor range may get better 

accuracy results than training on the second dataset, this may 

be a result of the magnitude of CS_factor compared to the 

actual phase-difference values in both datasets. This might be 

leading to a contrast in the second dataset to that of first 

dataset. 
 

 
 

TABLE I 
CLASSIFICATION MODEL RESULTS WHEN TRAINED AND TESTED ON THE FIRST DATASET 

 

Model 

version 

CS 

factor Precision Recall F1 Score 

True 

neg 

False 

pos 

True 

pos 

False 

neg 

SlipNet-

26 
100-200 1 0.852 0.92 48186 0 109 19 

SlipNet-
27 

50-100 0.991 0.819 0.897 48175 1 113 25 

SlipNet-

28 
25-50 1 0.861 0.925 48177 0 118 19 

SlipNet-
29 

10-20 1 0.881 0.937 48188 0 111 15 

SlipNet-

30 
1-6 0.911 0.713 0.8 48176 9 92 37 

SlipNet-

36 
10-200 0.991 0.85 0.915 48187 1 107 19 

 
TABLE II 

CLASSIFICATION MODEL RESULTS WHEN TRAINED AND TESTED ON THE SECOND DATASET 
 

Model 

version 

CS 

factor Precision Recall F1 Score 

True 

neg 

False 

pos 

True 

pos 

False 

neg 

SlipNet-6 100-200 0.972 0.998 0.984 334092 26 887 2 

SlipNet-7 50-100 0.978 0.999 0.988 334054 21 931 1 

SlipNet-8 25-50 0.995 0.999 0.997 334119 4 883 1 

SlipNet-9 10-20 0.973 0.98 0.977 334071 25 894 18 

SlipNet-
10 

1-6 0.876 0.193 0.317 334104 24 170 709 

SlipNet-

17 
10-200 0.97 0.838 0.899 334072 24 764 148 

 
TABLE III 

CLASSIFICATION MODEL RESULTS WHEN TRAINED AND TESTED ON THE FIRST DATASET (NUMBER OF SATELLITES) 
 

Model 

version Sats Precision Recall F1 Score 

True 

neg 

False 

pos 

True 

pos 

False 

neg 

SlipNet-
31 

5 1 0.951 0.975 48253 0 58 3 

SlipNet-

32 
4 0.794 0.947 0.864 48243 14 54 3 

SlipNet-
33 

3 1 0.886 0.940 48270 0 39 5 

SlipNet-

34 
2 1 0.500 0.667 48290 0 12 12 

SlipNet-
35 

1 0.000 0.000 0.000 48292 0 0 22 
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TABLE IV 

CLASSIFICATION MODEL RESULTS WHEN TRAINED AND TESTED ON THE SECOND DATASET (NUMBER OF SATELLITES) 
 
 

Model 

version Sats Precision Recall F1 Score 

True 

neg 

False 

pos 

True 

pos 

False 

neg 

SlipNet-

11 
5 0.966 0.941 0.953 334606 13 365 23 

SlipNet-
13 

4 0.923 0.951 0.937 334696 23 274 14 

SlipNet-

14 
3 0.860 0.939 0.897 334743 35 215 14 

SlipNet-

15 
2 0.954 0.954 0.961 334849 7 146 5 

SlipNet-

16 
1 0.000 0.000 0.000 334946 0 0 61 

 

  
Table 1 and 2 show the results with respect to the fixed 

CS_factor range of 10-20, these results show the effect of the 

cycle slip value (in cycles) on the model precision and recall 

metrics. The last four columns are the number of epochs 

where the SlipNet model correctly or mistakenly predicts 

cycle slips; this can then be tested regarding the true negative, 

false positive, true positive, and false negative (true_neg, 

false_pos, true_pos, and false_neg, respectively). 

Tables 3 and 4 show the confusion matrix error metrics of 

accepted classification results regarding the low number of 

satellites, which decreases the cycle slip numbers, CS_num, 

and achieves higher confusion matrix values, but with larger 

number of satellites. In addition, environmental factors have to 

be taken into consideration in order to estimate and analyze 

these results. 

Fig. 6 depicts the difference in precision metric results and 

the magnitude ranges of simulated cycle slips between the 

trained models on both datasets at different CS factor ranges. 

Fig. 7 shows the recall metric results vs. the magnitude ranges 

of simulated cycle slips for the proposed classification model. 

Finally, Fig. 8 exhibits the f1 score and the magnitude ranges 

for both datasets. 

 

 

Fig. 6.  Precision metric results vs. magnitude ranges of simulated cycle 

slips for the proposed classification model on the two datasets (orange: first 

dataset; red: second dataset). 

 

 

Fig. 7.  Recall metric results vs. magnitude ranges of simulated cycle slips 

for the proposed classification model on the two datasets (orange: first 

dataset; red: second dataset). 

 

 

Fig. 8.  F1 score metric results vs. magnitude ranges of simulated cycle 

slips for the proposed classification model on the two datasets (orange: 

first dataset, red: second dataset). 

 

It was observed from the previous figures that at higher 

ranges of CS factor, model precision is considerably lower 

when trained on the second dataset than precision when 

trained on the first dataset. This is a direct result of using 

higher cycle slip magnitude in epochs with simulated cycle 

slips in the training dataset. This results in fewer overall false 
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positives, (i.e., may even reach zero) contributing to a higher 

precision value, though this will not generalize well in a broad 

sense. 

On the other hand, the recall value and the f1-score prove 

higher cycle slip detection accuracy at CS factor ranges higher 

than the 1, 6 range, when the model is trained on the second 

dataset compared to models trained on the first dataset; while 

models in the range of 1, 6 trained on the first dataset perform 

better than the ones trained on the second dataset. 

It was concluded that in a dataset with higher numbers of 

epochs (as in the second dataset), the model can achieve great 

recall results, meaning it can detect more cycle slips out of the 

total simulated cycle slips, but it still performs well even at 

low number of available epochs with simulated cycle slips (as 

in the first dataset). Additionally, it should be noted that zero 

recall is reached when a single satellite phase-difference 

measurement is used when the simulated cycle slips are added. 

This means it is less sensitive to single satellite cycle slip 

occurrences and it is unlikely to detect such occurrences. 

Fig. 9, 10, and 11 depict the difference between the trained 

models on the first and the second datasets at a different 

number of satellites with added cycle slips for the precision, 

recall, and f1 score, respectively. 

 

 

Fig. 9.  Precision metric results vs. number of satellites with the simulated 

cycle slips for the proposed classification model on the two datasets 

(orange: first dataset; red: second dataset). 

 

 

Fig. 10.  Recall metric results vs. number of satellites with the simulated 

cycle slips for the proposed classification model on the two datasets 

(orange: first dataset; red: second dataset). 
 

 

Fig. 11.  F1 score metric results vs. number of satellites with the simulated 

cycle slips for the proposed classification model on the two datasets 

(orange: first dataset; red: second dataset). 

 

For the localization model results, it is clear from Table 5 that 

the proposed pipelined network technique has its positive 

impact on the outcome results. Using the output of the 

classification model as an input for the localization model 

proved beneficial in terms of overall precision and recall 

metrics. 

 

TABLE V 

 LOCALIZATION MODEL RESULTS WHEN TRAINED AND TESTED 

ON BOTH DATASETS 

Model 

versio

n Data 

Precisi

on 

Reca

ll 

F1 

Sco

re 

True 

neg 

Fals

e 

pos 

True 

pos 

Fals

e 

neg 

SlipN
et-18 Datase

t2 

0.970 
0.96
6 

0.96
8 

13376
65 

68 2221 78 

SlipN

et-22 
0.998 

0.99

7 

0.99

8 

11324

62 

108

3 

5410

21 

159

4 

SlipN
et-37 Datase

t1 

0.967 
0.89
1 

0.92
8 

24122
9    

10 295 36 

SlipN

et-38 
0.927 

0.95

5 

0.94

1 

15697

4    

594

2 

7530

3 

354

1 

 

Note that the ratio of cycle slips is not equivalent to the 

ratio of segments with simulated cycle slips declared in the 

CS_num column in Table 5. This is because the true_pos, for 

example, are not segments, but rather epochs that contains 

cycle slips, and this range may be within 1–4 epochs per 

segment. The same goes for other metrics, which are in epochs 

not segments. The reason is that a random generation process 

is used to generate the epoch at which the segment gets 

corrupted using the cycle slip integer. So, random epochs are 

generated within the range of 1–4 and a mean value is 

determined for the corrupted epochs of 2.5, which explains 

why the total number of cycle slips seem more like almost half 

of the total number of epochs in all segments, knowing that 

each segment has five epochs.  

As discussed earlier, the cycle slip estimation model was 

treated differently in terms of loss function, batch size, and 

number of training epochs. This model was trained using a 
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batch size of 100 and for 200 epochs. The MAE was used as 

the loss function to be minimized to achieve a meaningful 

accuracy metric. 

It can be shown in Table 6 that the model trained on the 

first dataset achieved less MAE than that trained on the second 

dataset. This is the result of having higher magnitude of phase-

difference values in second dataset than in the first. 
 

TABLE VI 

 CYCLE SLIP ESTIMATION MODEL RESULTS WHEN  
TRAINED AND TESTED  

 

Model Version Dataset MAE 

SlipNet-25 Second 0.459 

SlipNet-39 First 0.045 

 

V. CONCLUSION 

Global Navigation Satellite Systems cycle slip affects the 

range computation between the GNSS satellites and receivers, 

which leads to a deteriorated positioning solution for the users. 

A new real-time deep neural network LSTM autoencoder 

model technique is proposed for cycle slip detection and repair 

that achieves comparable results to classical methods of cycle 

slip detection and estimation. Contrary to classical methods, 

the results were achieved using datasets with sparse cycle slip 

epochs, where cycle slips were treated as rare events. These 

results were achieved by using phase-difference techniques 

that solicited research for single receiver learning solutions. 

The results were compared to other methods with respect to 

the number of epochs with cycle slips and the magnitude of 

cycle slips (CS_num & CS_factor). This achieved rather 

promising results, albeit the first end-to-end learning 

framework to solve the cycle slip detection, localization, and 

correction problem. 
 

Author’s contributions 

1- Conception or design of the work (A.R., A.Z., M.E.). 

2- Data collection and tools (A.Z.) 

3- Data analysis and interpretation (A.Z.) 

4- Funding acquisition (M.E.) 

5- Investigation (A.R., A.Z., M.E.). 

6- Methodology (A.Z., M.E.). 

7- Project administration (M.E.) 

8- Resources (M.E.) 

9- Software (A.Z.) 

10- Supervision (M.E.) 

11- Drafting the article (A.R., A.Z., and M.E.). 

12- Critical revision of the article. (A.R., A.Z., M.E.). 

13- Final approval of the version to be published (A.R., 

A.Z., and M.E.). 

All authors have read and agreed to the published version of 

the manuscript. 

 

REFERENCES 

[1] El-Rabbany, Ahmed. Introduction to GPS: The Global Positioning 

System. Boston, MA: Artech House, 2006 
[2] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global 

Positioning System. Theory and practice. Springer-Verlag Wien, 2001 

[3] B. Remondi, “Global positioning system carrier phase: Description and 
use,” Bull. Geod. 59, 361–377, 1985. 

[4] F. and R. W. Collin, “Application of the Wavelet Transform for GPS 

Cycle Slip Correction and Comparison with Kalman Filter,” 
Manuscripta Geod. 20(3), 161-72., 1995. 

[5] Z. Dai, “MATLAB software for GPS cycle-slip processing,” GPS Solut., 

2012, doi: 10.1007/s10291-011-0249-1. 
[6] G. Seeber, “Satellite Geodesy: Foundation, Methods and Applications,” 

Walter Gruyter, Berlin, New York, 2003. 

[7] P. Silva, “Cycle slip detection and correction using low cost IMU 
measurements,” Inst. to Super. tenico univerdate Tech. de, Lisboa., 

2012. 

[8] Z. Liu, “A new automated cycle slip detection and repair method for a 

single dual-frequency GPS receiver,” J. Geod., vol. 85, no. 3, pp. 171–

183, 2011, doi: 10.1007/s00190-010-0426-y. 

[9] U. H. Beutler, G., H. Bock, E. Brockmann, R. Dach, W. Gurtner, H. 
Habrich, P. D. Ineichen, A. Jaeggi, M. Meindl, L. Mervart, S. Rothacher, 

R. Schaer, T. Springer, and and R. W. Steigenberger, D. Svehla, D. 

Thaller, C. Urschl, “BERNESE GPS software,” Univ. Bern, 2006. 
[10] S. B. and R. B. L. Bisnath, “Automated cycle-slip correction of 

dualfrequency kinematic GPS data,” Proc. 47th Annu. Conf. Can. 

Aeronaut. Sp. Institute, 121-5., 2000. 
[11]  T. Yi, H. Li and G. Wang, "Cycle Slip Detection and Correction of GPS 

Carrier Phase Based on Wavelet Transform and Neural Network," Sixth 

International Conference on Intelligent Systems Design and 
Applications, 2006, pp. 46-50, doi: 10.1109/ISDA.2006.129  

[12]  B. Huang, L. Lintao and G. Guangxing. “Detection of Cycle-slip in the 

GPS Precise Point Positioning Based on Wavelet 
Transform.” Geomatics and Information Science of Wuhan 

University (2006)  

[13]  X. Shi, X.Su, R. Sheng, “Cycle-slip detection of GPS carrier phase 
observable based on wavelet technology,” J. Nanjing Univ. Sci. Technol. 

29(1), 105-22., 2005. 
[14] Y. Haitao “An Cycle-Slip Correction Method for Real-Time Kinematic 

GPS Data Based on Triple Differences 

Observation.”  University (2007)Geomatics Inf. Sci. Wuhan Univ. 32(8), 
711-4., 2007. 

[15]  Z. Zuoya, L.  Xiushan, W.  Xinzhou, C. Chuanfa, “GPS phase 

measurement cycle-slip detection based on a new wavelet function,” 
International Symposium on GPS/GNSS Vol.2 v.2 , 2006  

[16] S Bisnath, D. Kim and R. Langley. , “A New Approach to an Old 

Problem Carrier-Phase Cycle Slips,” GPS World, May 2001, pp 46-51., 
2001. 

[17] H.-K. Lee, J. Wang, and C. Rizos, “Effective Cycle Slip Detection and 

Identification for High Precision GPS/INS Integrated Systems,” Journal 

of Navigation, vol. 56, no. 3, pp. 475–486, 2003. 

 [18] X. Zhao, Z. Niu, G. Li, Q. Shuai, and B. Zhu, “A new cycle slip 

detection and repair method using a single receiver’s single station B1 
and L1 frequencies in ground-based positioning systems,” Sensors 

(Switzerland), vol. 20, no. 2, pp. 1–19, 2020, doi: 10.3390/s20020346. 

[19] X. Fan, R. Tian, X. Dong, W. Shuai, and Y. Fan, “Cycle slip detection 
and repair for BeiDou-3 triple-frequency signals,” Int. J. Adv. Robot. 

Syst., vol. 17, no. 3, pp. 1–14, 2020, doi: 10.1177/1729881420926404. 

[20] T. Li and S. Melachroinos, “An enhanced cycle slip repair algorithm for 
real-time multi-GNSS, multi-frequency data processing,” GPS Solut., 

vol. 23, no. 1, pp. 1–11, 2019, doi: 10.1007/s10291-018-0792-0. 

[21] N. S. Kosarev, K. M. Antonovich, and L. A. Lipatnikov, “The method of 
cycle-slip detection and repair GNSS meaturements by using receiver 

with high stability frequency oscillator,” Contrib. to Geophys. Geod., 

vol. 49, no. 3, pp. 283–301, 2019, doi: 10.2478/congeo-2019-0015. 
[22] Z. Liu, “A new approach for cycle slip detection and fix using single 

GPS receiver’s single satellite dual frequency data containing arbitrarily 

large pseudorange errors,” J. Glob. Position. Syst., vol. 16, no. 1, 2018, 
doi: 10.1186/s41445-018-0013-8. 

[23] W. Liu, X. Jin, M. Wu, J. Hu, and Y. Wu, “A new real-time cycle slip 

detection and repair method under high ionospheric activity for a triple-
frequency GPS/BDS receiver,” Sensors (Switzerland), vol. 18, no. 2, 

2018, doi: 10.3390/s18020427. 

javascript:searchTag('Zuoya,%20Zheng%20');
javascript:searchTag('Xiushan,%20Lu%20');
javascript:searchTag('Xinzhou,%20Wang%20');
javascript:searchTag('Chuanfa,%20Chen');
javascript:srchJournalNew('bibctrlno',%20'NPAP',%20'',%20'289723')
javascript:srchJournalNew('volumename',%20'NPAP',%20'289723',%20'v.2')


C: 40        AHMED RAGHEB, AHMED ZEKRY and MOHAMED ELHABIBY  

 

 

[24] M. El-Tokhey, T. F. Sorour, A. E. Ragheb, M. Moussa, “GPS cycle slips 

detection and repair through various signal combinations,” Int. J. Mod. 
Eng. Res., vol. 4, no. 12, pp. 01–10, 2014, [Online]. Available: 

http://www.ijmer.com/papers/Vol4_Issue11/Version-2/A04011_02-

0110.pdf. 
[25] Ahmed Adel El-Ghazouly, “Multi-Resolution Spectral Techniques for 

Static DGPS Error Analysis and Mitigation,” University of Calgary, 

2013. 
[26] T. Yi, H. Li, and G. Wang, “Cycle slip detection and correction of GPS 

carrier phase based on wavelet transform and neural network,” 2006, 

doi: 10.1109/ISDA.2006.129. 
[27] N. El-Sheimy, K. W. Chiang, and A. Noureldin, “The utilization of 

artificial neural networks for multisensor system integration in 
navigation and positioning instruments,” IEEE Trans. Instrum. Meas., 

2006, doi: 10.1109/TIM.2006.881033. 

[28] C. Cai, Z. Liu, P. Xia, and W. Dai, “Cycle slip detection and repair for 
undifferenced GPS observations under high ionospheric activity,” GPS 

Solut., 2013, doi: 10.1007/s10291-012-0275-7. 

[29] Z. Dai, S. Knedlik, and O. Loffeld, “Instantaneous Triple-Frequency 
GPS Cycle-Slip Detection and Repair,” Int. J. Navig. Obs., vol. 2009, 

pp. 1–15, 2009, doi: 10.1155/2009/407231. 

[30]  and A. P. A. Grewal, M. S., L. R. Weill, “GLOBAL POSITIONING 
SYSTES, INERTIAL NAVIGATION, AND INTEGRATION.,” 

Hoboken, New Jersey. John Wiley Sons, Inc., 2007. 

[31] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term 
memory. Neural computation, 9(8), pp.1735-1780. 

 

 

Arabic Title  

وتقديره  صططناعةتالإ العالمي عبر الأقمارالملاحت  الانقطاع الموجي لنظن صفح

 .ذاكرة طويلت المدى باستخدام نموذج التشفةر التلقائي القائن علي

 

Arabic Abstract  

فٍ انؼذَذ ين رطجُقبد  نهًلاؽخ انؼبنًُخطنبػُخ صالإرسُزخذو أنظًخ الأقًبس 

الأخطبء وينهب ين ثؼط رؼبنٍ رهك الأنظًخ  إشبسح . ونكن،انًلاؽخ ورؾذَذ انًىاقغ

ف . يًب َؤدٌ إنً رذهىس ؽم رؾذَذ انًىاقغلانقطبع انًىعٍ ا لانقطبع اَؼُشَّ

يىعبد انطىس انؾبيهخ. َؼزجش  ػهً أنهب قفزح يفبعئخ ثؼذد صؾُؼ ين انًىعٍ

نؾذوس رهك انظبهشح. نزنك  ين أكضش الأسجبة شُىػًبنشبط انزشوثىسفُش انؼبنٍ 

رقذَشاد يىصىقخ نزؾذَذ صىل ػهً َغت اكزشبف ورصؾُؼ رهك انظبهشح نهؾ

 .انًىاقغ

وإصلاؽه ثنبءً ػهً فشق  لانقطبع انًىعٍارى اقزشاػ نهظ عذَذ نهكشف ػن  

ًَكن نًضم . نطىس انشئُسٍ يغ نًىرط شجكخ ػصجُخ ػًُقخ قصُشح انًذي نهزاكشحا

ثُن انجُبنبد ثأكًههب صى  لانقطبعا هزا اننًىرط رصنُف انجُبنبد انًؼُجخ ؽُش ؽذس

 لانقطبع انًىعٍ.اانزنجؤ ثبنفزشح انذقُقخ انزٍ ؽذصذ فُهب 

َؼزجش اننظبو انًقزشػ ين أوائم الأسبنُت انزٍ رسزخذو اطش عذَذح نهزؼهُى نؾم 

أؽذس طشق ثغىدح ػبنُخ ثبنًقبسنخ يغ  قُبسبدانفٍ  انغًىض انصؾُؼيشكهخ 

 هورصؾُؾ لانقطبع انًىعٍاانكشف ػن 

 

 


