Comparative Analytical Study on Water Efficiency Category in Green Building Rating Systems

Raghda Abdelwahab Osman*, Sherif Ahmed Sheta and Heba Mohamed Abdou

Abstract—Fresh water is a scarce resource that is slowly renewable, so water management is very important to achieve the sustainability of architecture and urbanization through the medium and long term. Recently, environmental assessment systems have been given attention and development by many countries globally and regionally, and thus assessment systems have spread to help the architect achieve a sustainable environment and implementing green building practices. This can be implemented by adopting each system strategies such as energy, water, materials...etc. Since the scarcity of fresh water is a global issue, this paper aims to identify clear strategies of water efficiency and how to preserve it to obtain the best strategies that can be used to improve water efficiency inside buildings in Egypt. To attain this aim, the study follows a clear theoretical methodology in which the issue of water is recognized globally and its impact on architecture as well as water efficiency during the life cycle of the building. Then, a comparative analytical study was conducted for water efficiency between the local GPRS 2018 assessment system against the two global assessment systems LEED BD&C V1.4 and Green Star design & as built V1.3. The study concluded with an applied example by applying the strategies of water efficiency in GPRS2018, to clarify strengths and weaknesses points.
2. قضية المياه على مستوى العالم

واجه العالم مشكلات عدة حول استخدام المياه، خاصة في ظل التقدم والتكنولوجيا والاتجاهات العصرية. كانت هناك أبحاث تشير إلى أن هناك حاجة كبيرة لإيجاد حلول كافية للحفاظ على موارد المياه. استعراض بعض النصوص أعلاه وفقًا لبعض الأبحاث، حيث يعتبر المياه مهمة للغاية في حياة الإنسان. الموارد المتاحة للبشر بحاجة إلى إيجاد حلول من خلال البرامج الدولية والتشريعات المحلية والدولية.

3. مياه المياه بالملايين:

وارد المياه في الولايات المتحدة الأمريكية:

2017: 2,000,000,000 متر مكعب
2018: 2,100,000,000 متر مكعب
2019: 2,200,000,000 متر مكعب
2020: 2,300,000,000 متر مكعب
2021: 2,400,000,000 متر مكعب
2022: 2,500,000,000 متر مكعب
2023: 2,600,000,000 متر مكعب
2024: 2,700,000,000 متر مكعب
2025: 2,800,000,000 متر مكعب
2026: 2,900,000,000 متر مكعب
2027: 3,000,000,000 متر مكعب
2028: 3,100,000,000 متر مكعب
2029: 3,200,000,000 متر مكعب
2030: 3,300,000,000 متر مكعب
2031: 3,400,000,000 متر مكعب
2032: 3,500,000,000 متر مكعب
2033: 3,600,000,000 متر مكعب
2034: 3,700,000,000 متر مكعب
2035: 3,800,000,000 متر مكعب
2036: 3,900,000,000 متر مكعب
2037: 4,000,000,000 متر مكعب
2038: 4,100,000,000 متر مكعب
2039: 4,200,000,000 متر مكعب
2040: 4,300,000,000 متر مكعب
2041: 4,400,000,000 متر مكعب
2042: 4,500,000,000 متر مكعب
2043: 4,600,000,000 متر مكعب
2044: 4,700,000,000 متر مكعب
2045: 4,800,000,000 متر مكعب
2046: 4,900,000,000 متر مكعب
2047: 5,000,000,000 متر مكعب
2048: 5,100,000,000 متر مكعب
2049: 5,200,000,000 متر مكعب
2050: 5,300,000,000 متر مكعب
2051: 5,400,000,000 متر مكعب
2052: 5,500,000,000 متر مكعب
2053: 5,600,000,000 متر مكعب
2054: 5,700,000,000 متر مكعب
2055: 5,800,000,000 متر مكعب
2056: 5,900,000,000 متر مكعب
2057: 6,000,000,000 متر مكعب
2058: 6,100,000,000 متر مكعب
2059: 6,200,000,000 متر مكعب
2060: 6,300,000,000 متر مكعب
2061: 6,400,000,000 متر مكعب
2062: 6,500,000,000 متر مكعب
2063: 6,600,000,000 متر مكعب
2064: 6,700,000,000 متر مكعب
2065: 6,800,000,000 متر مكعب
2066: 6,900,000,000 متر مكعب
2067: 7,000,000,000 متر مكعب
2068: 7,100,000,000 متر مكعب
2069: 7,200,000,000 متر مكعب
2070: 7,300,000,000 متر مكعب
2071: 7,400,000,000 متر مكعب
2072: 7,500,000,000 متر مكعب
2073: 7,600,000,000 متر مكعب
2074: 7,700,000,000 متر مكعب
2075: 7,800,000,000 متر مكعب
2076: 7,900,000,000 متر مكعب
2077: 8,000,000,000 متر مكعب
2078: 8,100,000,000 متر مكعب
2079: 8,200,000,000 متر مكعب
2080: 8,300,000,000 متر مكعب
2081: 8,400,000,000 متر مكعب
2082: 8,500,000,000 متر مكعب
2083: 8,600,000,000 متر مكعب
2084: 8,700,000,000 متر مكعب
2085: 8,800,000,000 متر مكعب
2086: 8,900,000,000 متر مكعب
2087: 9,000,000,000 متر مكعب
2088: 9,100,000,000 متر مكعب
2089: 9,200,000,000 متر مكعب
2090: 9,300,000,000 متر مكعب
2091: 9,400,000,000 متر مكعب
2092: 9,500,000,000 متر مكعب
2093: 9,600,000,000 متر مكعب
2094: 9,700,000,000 متر مكعب
2095: 9,800,000,000 متر مكعب
2096: 9,900,000,000 متر مكعب

استمرار ظروف الجفاف شكّلت المياه الفحالة 4% من إجمالي إمدادات المياه في الفترة من 2009-2019 [25] بلغ متوسط استهلاك الفرد من مياه الصرف متوسط: 2.31 م3 / يوم في مصر [34]. وهو متوسط مطبق للغاية تحت أي معيار، وخاصة بالنسبة للي تعرض للتغيرات في ظل ظروف المياه في البيئة الخاصة المائية، مما أن صنع فيها خطوط أتابعي قديماً، حيث أن استهلاك المياه في الدول المختلفة يختلف بشكل كبير، حيث أن توزيع المياه بشكل عام هو النبع الرئيسي، حيث أن استهلاك المياه أن يكون في النفايات، والمياه المستخدمة بالقطاعات المختلفة بصرتونيا وكبيرة المياه الخاصة في استيرد المياه بصارتونيا، أي لا يوجد نمو في المياه المستخدمة بمستوى المياه المتغيرة ما يؤثر على كفاءة المياه داخل المعبئي وبالتالي يؤدي على استدامة المياه المستخدمة.

ب) مقياس الفرد:

عند تقدير مقياس الفرد من استهلاك المياه في اليوم للبلدان الثلاثة المحترمة والمتوسط تقدير الفرد من استهلاك المياه أن يوصي أن تكون في مصر هو الأكثر خطورة بين الدول الثلاثة تم في مصر والمجلس والمتوسط من المعبئي (صغيرة)

(3) مقياس الفرد:

مقياس الفرد) (3) مقياس مركب أو مقياس الفرد بدل النفايات بالمعبئي

ساهم الفرد (صغيرة)

(3) مقياس الفرد بدل النفايات بالمعبئي

كفاءة استخدام المياه:

إنجاز وظيفة أو مساهمة أو عملية باستخدام أقل قدر من المياه:

مورش للعلاقة بين كمية المياه المطلوبة لغرض معين وكمية المياه المستخدمة

لإتمام نفس الغرض:

-50% من العلاقة بين كفاءة المياه والمحافظة عليها:

تحتفظ كفاءة المياه عن الخلفية على المياه من حيث أنها تركز على تقليل الفاقد، ولعين تقدير استخدام المياه، كما تؤكد أن الفاقد الذي يمكن أن يتنبئ به مستخدمو المياه من خلال إجراء بعض التغييرات في الشريحة المناسبة، وتدرج التجارب لتحديد خليفة المياه، حيث أن الفاقد هو الفضل على المستوى المطلوب من كمية المياه الفعالة. وفقاً لذلك، ندرج كفاءة المياه في التخصص (صغيرة)

كفاءة استخدام المياه خلال دورة حياة المبنى:

يعود تحسن كفاءة المياه في المبنى إلى توفر الفاقد وتحليل تكاليف مياه الصرف الصحي والطبيبة إلى أن يكون محطة تحلية جيدة. يصل اليوم المياه داخل المبنى أكثر كفاءة، يجب اعتماد نهج التخفيف والاقتصادية، واعتماد المياه في مختلف الفاقد، يجب تقليل استخدام المياه في مكان، ففي مراهقية التحلية والتشريع للمبنى.

كفاءة استخدام المياه بدل النفايات المعبئي بصدقي، إذن استخدام أنظمة كفاءة المياه

(3) مقياس الفرد بدل النفايات بالمعبئي

ورفع مستوى من الترسيب والمتابعة، استهداف مقياس معبئي دبلقي يتم تجميع المياه المتغيرة:

(3) مقياس الفرد بدل النفايات بالمعبئي

هذا يتفق مع كفاءة استخدام المياه خلال دورة حياة المبنى المعبئي، حيث يظهر من خلال كل دورة المعبئي على المعماري.
مياه الأطوار التي تنقل الجراني السطحي بعدها في الموقع كما يوضح بالشكل رقم (2).

(4) المرحلة ما قبل التصنيم [39]:

تتطلب هذه المرحلة مهارة عالية تؤثر بها دور المهندس المعماري، لأنها تشمل تخزين الخرز والجبهات، وتتأثر كفاءة الماء بالمساحة بين الخرز العامل الأول. وهو تخزين الخرز حيث تعتبر نفس الخرز من المواد التي تتأثر هذه الخرز في خزان الماء في الماء وتتأثر أيضاً على تصميم واسطه المخزون تأثيرات القتال في وقت التشغيل، وتحت وجبة مادة كيميائية أو تغيرات أخرى في الماء، وأعمال التبرير، ومناطق الҮطاء الماء. تستعيد هذه الخرز في اختيار الأشخاص المناسبين لماء، على سبيل المثال، تبلغ نسبة الطبق على الماء غير الصالحة للشرب في المائي للفلكلية 50% وصل إلى 90 في المائي [33].

بعد الأجواء انتهى البرمجة أثناء المرحلة التصنيم أكثر فعالية من حيث الكفاءة بدأ من أخذ الأعمال حافل في الوقت، حيث أن أعمال الهندسة بين الماء، وتعتبر أعلى مرحلة من الخرز في اختبار الماء، حيث يتم في هذه المرحلة انتهى الخرز من خلال الخرز وتجهيز الخرز، بقلة مادة كيميائية أو تغيرات أخرى في الماء، وللإفاعات التقليدية للماء، مما يتسبب في نحو الخرز الكمالية بطول الماء، وكذلك في منطقة الماء من الماء المائي أو مياه الصرف الصحي (المياه الصناعية والمياه البصرية) واستخدام النفايات المحيدة والتكيفية مع البيئة، وكذلك تجميع المياه الأخرى ودراسة الخرز المحيطية والتكيفية مع البيئة، وكذلك تجميع المياه المحطة ودراسة الخرز المحيطية والتكيفية مع البيئة، وكذلك تجميع المياه الأخرى وااعتماد المعايير في دقة الخرز المائي.

نظام إعداد استخدام الماء في الصرف الصحي [25].

5. مؤثرات نظام التدفق البيئي:

(2) مرحلة التشغيل [10]:

تعتبر صناعة الماء هي أكثر منشأتام للمواد في العالم، وقد اتفاق الغاء، حيث يكون أحد المواضيع الرئيسية المرتبطة حتى تخفيض استخدام المواد التي تستخدم في تركيب المواد، مثل البلاستيك، الأحجار، الطوب، وتغيرات الخرز. ينصح أن يؤثر PVC (المواد البلاستيكية) على جودة المياه الجوفية، كما أن الخرز من المواد التي تصرفها في المستعمرات المائية تقلل من المواد الماء في الدورة الدائمة، بالإضافة إلى ذلك، فإن استخدام الأسطح غير المنحدرة (مثل الخرسانة والأسمنت) يقلل بشكل كبير من تغذية المياه الجوفية، وكذلك استرخائات إدارة

(3) مرحلة التدفق [11]:

قائمة مياه الأطوار في نظام الاستخدامخل دورة المياه .
العنوان: LEED BD&C V4.1

المقدمة:

LEED BD&C V4.1

1. نظام تقييم الريادة في الطاقة والتصميم البيئي

LEED BE&B V4.1

1. النظام من منظور من خلال جدول السابق رقم (1) ومن خلال المخطط التالي رقم (2) يتضح أن معايير كفاءة المباني حاصل على 11 نقطة فقط داخل نظام التقييم مع معاناة الولايات المتحدة الأمريكية من القفز المائي معظم أيام LEED BD&C V4.1

المنشأ، يجب الرفع نقاط معايير كفاءة المباني داخل نظام تقييم LEED BD&C V4.1

2. التعرف بنظام LEED في الطاقة والتصميم البيئي

LEED BD&C V4.1

1. 10/20: نظام تقييم 10/20

علمية المكانيّة

المواد والمواد

الطاقة

الانبعاث

البيئة الأدبية

البيئة الأد比亚
Green Star

<table>
<thead>
<tr>
<th>Year</th>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Stage 1</td>
<td>Pre-Application Assessment (PAA)</td>
</tr>
<tr>
<td>2004</td>
<td>Stage 2</td>
<td>Application Assessment (AA)</td>
</tr>
<tr>
<td>2005</td>
<td>Stage 3</td>
<td>Certification Assessment (CA)</td>
</tr>
</tbody>
</table>

Green Star - Australia

<table>
<thead>
<tr>
<th>Category</th>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>3</td>
<td>Reducing energy consumption by 15%</td>
</tr>
<tr>
<td>Water</td>
<td>2</td>
<td>Conserving water usage by 15%</td>
</tr>
<tr>
<td>Waste</td>
<td>1</td>
<td>Reducing waste generation by 15%</td>
</tr>
</tbody>
</table>

Green Star - International

<table>
<thead>
<tr>
<th>Region</th>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>2</td>
<td>Adapting designs to local climates</td>
</tr>
<tr>
<td>Asia</td>
<td>1</td>
<td>Incorporating sustainable practices</td>
</tr>
</tbody>
</table>

Green Star - Certification

<table>
<thead>
<tr>
<th>Level</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronze</td>
<td>Achieves 15% energy reduction</td>
</tr>
<tr>
<td>Silver</td>
<td>Achieves 30% energy reduction</td>
</tr>
<tr>
<td>Gold</td>
<td>Achieves 45% energy reduction</td>
</tr>
</tbody>
</table>

Green Star - Cultural

<table>
<thead>
<tr>
<th>Culture</th>
<th>Credit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>2</td>
<td>Integrating local design principles</td>
</tr>
<tr>
<td>Materials</td>
<td>1</td>
<td>Using sustainable building materials</td>
</tr>
</tbody>
</table>

Green Star - Green Building Council of Australia

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Consultation</td>
<td>Understanding the project</td>
</tr>
<tr>
<td>Design</td>
<td>Developing sustainable design</td>
</tr>
<tr>
<td>Construction</td>
<td>Implementing sustainable construction methods</td>
</tr>
<tr>
<td>Operation</td>
<td>Maintaining sustainability during operation</td>
</tr>
</tbody>
</table>

Green Star - Case Study

1. **Green Star Australia**: Over 200 projects have been certified, with a focus on energy and water efficiency.
2. **Green Star International**: 50 projects across the globe, emphasizing local adaptation and cultural integration.
تم اختيار نظام Green Star Design & As Built V1.3 للمنافسة في مرحلة التصاميم والمنافسة الجيدة والicken نظام تقييم GPRS 2018 وسيتم التعرف عليه كاليتي:

Green Star Design & As Built V1.3

4.2.7

تقتصر نظام تقييم على مجموعة من المعايير والمنافسة والموضوع بالجداول رقم (3):

Design & As Built V1.3Green Star

المحترف

الإطار

الإدارة

15

6

على Green Star Design & As Built V1.3

15/V1.3

من خلال الجداول السابق رقم (3) ومن خلال المخطط الثاني رقم (8)

بضيف ان مكانية المعايير حصل على 12 نقطة فئات داخل نظام التقييم Green Star Design & As Built V1.3

مع معالجات استرالية من الفترatin من خلال نظام التقييم

المتانى طوال أيام السنة، يجب فرق نقاط معايير مكانية داخل نظام التقييم Green Star Design & As Built V1.3

GPRS V1.3: مقترنة مع نظام معايير نظام Green Star

8

1.6

11

6

لم يتم استخدام المعايير في مرحلة التصاميم في مصر.

2018

1.3

1.

1.3

Design & As Built

Design & As Built V1.3

1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built

Design & As Built V1.3

Design & As Built
GPRS 2018

جداول رقم (6) محددات نظام تقييم 2018

03/01/2018

المصادر:

BD&C V4.1

GPRS2018

GPRS Design V1.3

GREEN STAR design & as built V1.3 BD&C V4.1

من خلال الجدول السابق رقم (1) ومن خلال المخطط التالي رقم (9) ينصح أن تعتبر كفاءة نظام الاتصال الفعال من نقاط ونسبة بينها ما يقل على أن تصل تجربة من نظام GPRS في ممارسة الاتصال ونسبة جانب الاهتمام بمصلحة مقياس في ممارسة الاتصال في نظام تقييم المحلي

المخطط رقم (9): مقارنة معايير GPRS 2018

المصادر:

BD&C V4.1

GPRS 2018

الرجاء مراجعة الملخص المفصل للموضوع قبل القراءة الكاملة.
6. مقارنة استراتيجيات معيار كفاءة المياه داخل نظام التقييم المختارة

تُستخدم مقاييس نماذج كفاءة المياه داخل نظام القياس العالمي والمواقع المحلي.

أُستخدم نظام التقييم المحيط بمرصد مصر في مجالي التصميم والبناء.

<table>
<thead>
<tr>
<th>المستخدم</th>
<th>LEED BD&C V4.1</th>
<th>LEED BD&C & As Built V1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Star</td>
<td>30%</td>
<td>11%</td>
</tr>
<tr>
<td>GPRS2011</td>
<td>0%</td>
<td>10%</td>
</tr>
</tbody>
</table>

| مخطط رقم (10) | وضع الرسالة | معيار كفاءة المياه داخل نظام التقييم المختارة الثلاثة
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GPRS2011</td>
<td>30%</td>
<td>GPRS2011</td>
</tr>
<tr>
<td>Green Star Design & As Built V1.3</td>
<td>11%</td>
<td>Green Star Design & As Built V1.3</td>
</tr>
<tr>
<td>LEED BD&C V4.1</td>
<td>10%</td>
<td>LEED BD&C V4.1</td>
</tr>
</tbody>
</table>

جدول رقم (4) مقارنة بين نماذج LEED BD&C V4.1 و نظام LEED BD&C & As Built V1.3

يُنصح بتصنيف لابسلوندل من حيث تاريخ الاستخدام. ونظام LEED BD&C V4.1، حيث تم تطبيقه في مجالي التصميم والبناء، للمساعدة في تحقيق أفضل مستويات كفاءة المياه داخل نظام التقييم المختارة.

<table>
<thead>
<tr>
<th>نظام تقييم الم-rounded المصري GPRS2018</th>
<th>نظام تقييم Green Star Design & As Built V1.3</th>
<th>نظام تقييم LEED BD&C V4.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>2003</td>
<td>2003</td>
</tr>
<tr>
<td>EGBC</td>
<td>EBC</td>
<td>USBC</td>
</tr>
<tr>
<td>دولة واحدة</td>
<td>دولة واحدة</td>
<td>دولة واحدة</td>
</tr>
<tr>
<td>المباني الجديدة في مرحلة التصميم</td>
<td>المباني الجديدة في مرحلة التصميم</td>
<td>المباني الجديدة في مرحلة التصميم</td>
</tr>
<tr>
<td>المباني البديلة في مرحلة التصميم</td>
<td>المباني البديلة في مرحلة التصميم</td>
<td>المباني البديلة في مرحلة التصميم</td>
</tr>
<tr>
<td>تجديدات المباني القائمة</td>
<td>تجديدات المباني القائمة</td>
<td>تجديدات المباني القائمة</td>
</tr>
<tr>
<td>غير محدود</td>
<td>5000 نفطة</td>
<td>5000 نفطة</td>
</tr>
<tr>
<td>19.90 نفطة</td>
<td>49.90 نفطة</td>
<td>49.90 نفطة</td>
</tr>
<tr>
<td>تجهيز مباشط متحركة</td>
<td>49.90 نفطة</td>
<td>49.90 نفطة</td>
</tr>
<tr>
<td>ثلاث نجوم مبرهدة: ماما (34.65) نفطة</td>
<td>أربع نجوم: أفضل ممارسة (54.60) نفطة</td>
<td>أربع نجوم: أفضل ممارسة (54.60) نفطة</td>
</tr>
<tr>
<td>نجمات ممتاز (74.90) نفطة</td>
<td>نجمات ممتاز (74.90) نفطة</td>
<td>نجمات ممتاز (74.90) نفطة</td>
</tr>
<tr>
<td>الادارة</td>
<td>الادارة</td>
<td>الادارة</td>
</tr>
<tr>
<td>الشريعة المستخدمة</td>
<td>الشريعة المستخدمة</td>
<td>الشريعة المستخدمة</td>
</tr>
<tr>
<td>الشريعة الاستراتيجية</td>
<td>الشريعة الاستراتيجية</td>
<td>الشريعة الاستراتيجية</td>
</tr>
</tbody>
</table>

من خلال الجدول السابق يتضح أن نظرية LEED BD&C V4.1 متملأ أعلى نسبة وهذا يتضح أكثر بالخطو رقم (11).
الدراسة التطبيقية للباحثين زينات ميدانية

 سيتم دراسة مدى تطبيق استراتيجيات معبر كفاءة المياه في نظام التقييم المحلي على مبني شركة مياه الشرب والصرف الصحي بالدقيه كما موضح بالجدول رقم (1)

<table>
<thead>
<tr>
<th>الجدول رقم (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>تقييم الوضع الراهن لمبنى شركة المياه من خلال نظام تقييم GPRS2018</td>
</tr>
<tr>
<td>المصدر: الباحثون زينات ميدانية</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>معلومات أساسية عن المبنى</th>
</tr>
</thead>
<tbody>
<tr>
<td>الموقع: المنصورة محافظة الدقيه</td>
</tr>
<tr>
<td>توع المبنى: إداري (قائمة)</td>
</tr>
<tr>
<td>المساحة: 3 م²</td>
</tr>
<tr>
<td>رقم المبنى: 2</td>
</tr>
</tbody>
</table>

يقع مبني شركة مياه الشرب والصرف الصحي بالدقيه على الطريق السريع - نهاية مسكن العبور بالجزر الالي بدبيه المنصورة. بدلا من الشمالي الطريق السريع ومن الجنوب محطة معالجة مياه الصرف الصحي ومضيق أراضي فضاء ومن الغرب توسعات محطة معالجة مياه الشرب والصرف الصحي بالدقيه كما موضح بالشكل رقم 5

من خلال الجدول التالي رقم (11) يوضح وجود قصور في الوضع الراهن لمبنى شركة مياه الشرب والصرف الصحي بالدقيه حيث أنه لم يحقك استراتيجيات معبر كفاءة المياه بنظام التقييم المحلي 2018 ولم يحقق جزئيا سويا من المتغيرات الطبيعية باستخدام طلبات مياه غير المستخدمة في المياه الصالحة للشرب.

كما نشأ من المثال التطبيقي وجود نقص في فائض معيار كفاءة المياه LEED داخل نظام تقييم 2018 GPRS بمقارنته بنظام التقييم العالمي حيث لم GREEN STAR Design &As built V1.3-B&D&C V1.4 ينقر داخل معيار كفاءة المياه التالي:
1. استخدام المياه للبريد
2. إعادة استخدام المياه الغير للماء
3. تقليل استخدام الماء
4. اختيار الماء في نظام الري
5. بنية شركة المياه المحروقات (1480)
6. من المعادن والمعادن في المياه
7. استخدام الاستراتيجيات لاستخدام المياه
8. تحليل النتائج

من خلال تطبيق استراتيجيات استغلال المياه داخل نظام تقنيّة الماء في شركة المياه المحروقات، تم استخدام تقنيّة المستحيل الماء داخل نظام تقنيّة الماء المحروقات، مما يؤثر على تقنيّة الماء المحروقات، بالماء وتقنيّة الماء المحروقات.

GPRS2018
GPRS2018
GPRS2018
GPRS2018
GPRS2018
GPRS2018
GPRS2018
GPRS2018
GPRS2018
منطقة التقييم تشمل كل مراحل المشروع من خلال دمج جوانب الهندسة المختلفة مع تصميم الداخلي.

- الاهتمام بالشكل والتنظيم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1

- الاهتمام بالاعتماد على معايير التصميم الداخلي على نطاق واسع ومتعددة، بما في ذلك GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والราว) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 ل.setDefault Design As Built V1.3 BD&C V4.1.

- التزويج التصميم الداخلي للبيئة (الضغط، الطاقة والavaş) لاستخدام مهنة GPRS 2018 L...
An organization named the Middle East Institute of Water and Environment (MEIWE) was established in 2017 to promote sustainable water management practices. The institute's mission is to develop and implement innovative solutions for water scarcity and management challenges, focusing on the needs of developing countries. MEIWE has also established partnerships with various international organizations, such as the United Nations Development Programme (UNDP) and the World Bank, to support water sustainability initiatives. The institute's work includes research, advocacy, and capacity building to ensure sustainable water management practices are adopted in developing countries.
دراسة تحليلية مقارنة لمعايير كفاءة المياه بنظام تقييم المباني الخضراء

الماء العلبي مورد نادر يتجدد، لذا فإن إدارة المياه أمر غني في الاهتمام لتنفيذ استدامة العقار على المدى المتوسط والبعيد. مؤخرًا تم تطوير واعتماد نظام التقييم البيئي العالمي والمحلي من قبل العديد من البلدان عالمياً واقليمياً، وبالتالي انتشرت نظام التقييم لمساعدة المهندس المعماري على تحقيق بيئة مستدامةً، وذلك عن طريق تبني كل نظام لمعايير رئيسية مستدامة للماء والمواد...

أًٛبِ انًجٛذ .يؤخشاً يٕسد َبدس ثطئ انزدذد ، نزا فبٌ اداسح انًٛبِ أيش غبٚخ فٗ الاًْٛخ.

نزا فبَٙ انَظى انَظي...