
MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 41, ISSUE 3, SEPTEMBER 2016 E:
 Mansoura University

Faculty of Engineering

Mansoura Engineering Journal

Abstract—The rapid evolution of technology has changed the

face of education especially usage of mobile device that aren't

devoid of any student hand. The term “mobile devices” covers

many different kinds of devices (e.g. smart phones, cell phones,

personal digital assistant (PDA), tablets, netbooks, etc.). Hoping

take advantages of these devices in mobile learning which allow

learning anywhere and anytime. There may be some obstacles to

use these devices, such as wireless bandwidth and client’s battery

power

 Data caching is an appropriate technique for reducing

wireless data transmissions in mobile information systems. In this

paper we present overview of most popular cache techniques

which use performance metrics that might be adopted to assess

the quality of caching policy.

Received: (June,) - revised: (July,) - accepted: (

August,)

Ibrahim Y. Abdel-Baset,Communications Engineering Dept., Faculty of

Engineering, Mansoura University, Egypt
Mohamed A. Mohamed,Communications Engineering Dept., Faculty of

Engineering, Mansoura University, Egypt

Ahmed Sh. Samra,Communications Engineering Dept., Faculty of
Engineering, Mansoura University, Egypt

Ahmed Abou-Taleb,Communications Engineering Dept., Faculty of

Engineering, Mansoura University, Egypt

I. INTRODUCTION

EARNING via mobile devices is widely accepted by

the learner community. Learners are interested in

using all available mobile learning resources through

mobile phones and personal digital assistants (PDAs) to access

information anytime and anywhere. According to Molenet,

mobile learning can be broadly defined as the exploitation of

ubiquitous handheld technologies, together with wireless and

mobile phone networks, to facilitate, support, enhance and

extend the reach of teaching and learning. Mobile learning

provides an educational environment in which learners can

learn without any limitation of time, place, or device; there by

realizing a more creative and learner-centered educational

process can take place in any location [1].

Mobile devices and mobile databases have become common

these days. Caching frequently accessed data on the client side

is an effective technique for improving performance in a

mobile environment. But the caching schemes in mobile

environment need to be different from those in wired

networks, due to many reasons: (i) wireless networks have a

limited bandwidth; (ii) downstream bandwidth can be much

higher than the upstream one and the clients usually can’t

directly talk to each other, and (iii) mobile clients also limited

power and could be disconnected for long periods of time [2].

Cache Policies for Smartphone in Flexible

Learning: A Comparative Study

سياسات الحخزيه المؤقث للهواجف الذكية في الحعليم المزن:

 دراسة مقاروة

Ibrahim Y. Abdel-Baset, Mohamed A. Mohamed, Ahmed Sh. Samra and Ahmed Abou-Taleb

KEYWORDS:

Mobile learning, Cache,

Cache techniques,

Cache policies, Cache

replacement policy,

Smartphone,

Performance metrics.

إٌماٌت اٌخٝ إْ اٌخطٛس اٌسش٠غ ٌٍخىٌٕٛٛج١ا غ١شث ٚجٗ اٌخؼ١ٍُ ٚخاصت اسخخذاَ الأجٙضة -:اٌٍّخص اٌؼشبٟ

لا حخٍٛ ِٕٙا ٠ذ أٜ طاٌب. ِصطٍح "الأجٙضة إٌماٌت" ٠شًّ أٔٛاع ِخخٍفت ِٓ الأجٙضة)ِثً اٌٙٛاحف اٌزو١ت،

(، ِٚا إٌٝ رٌه(. أًِ اسخفادة ِٓ ٘زٖ الأجٙضة فٟ PDAاٌٙٛاحف اٌّحٌّٛت، اٌّساػذ اٌشلّٟ اٌشخصٟ)

ْ ٕ٘ان بؼط اٌؼمباث اٌخٟ ححٛي دْٚ اسخخذاَ ٘زٖ اٌخؼٍُ اٌّخٕمً لإحاحت اٌخؼٍُ فٟ أٞ ِىاْ ٚصِاْ. لذ ٠ىٛ

الأجٙضة، ِثً الإحصاي اٌّسخّش بشبىاث الإٔخشٔج, ػشض إٌطاق اٌخشددٞ اٌلاسٍى١ت, ٚطالت اٌبطاس٠ت ٌٍجٙاص

إٌماي. وفاءة حخض٠ٓ اٌب١أاث ِٓ أُ٘ اٌطشق ٌٍحذ ِٓ ٔمً اٌب١أاث لاسٍى١ا فٟ أٔظّت اٌّؼٍِٛاث اٌّخٕمٍت. فٟ

ٔمذَ ٔظشة ػاِت ػٍٝ ِؼظُ حم١ٕاث اٌخخض٠ٓ لاخخ١اس الأفضً ٚاسخخذاِت ٌخطب١ماث اٌخؼ١ٍُ إٌماي ٘زٖ اٌٛسلت

ػٍٝ اٌٙٛاحف اٌزو١ت, ػٓ طش٠ك اسخخذاَ ِؼا١٠ش الأداء اٌخاصت باٌخخض٠ٓ اٌّؤلج ٚاٌخٟ ٠ّىٓ اػخّاد٘ا ٌخم١١ُ

 ٔٛػ١ت س١است اٌخخض٠ٓ

L

E: IBRAHIM Y. ABDEL-BASET, MOHAMED A. MOHAMED, AHMED SH. SAMRA AND AHMED ABOU-TALEB

Therefore, any of the cache invalidation schemes have to be

energy efficient and support long and frequent disconnections.

Wireless bandwidth and client’s battery power are the two

scarcest resources, which can be measured by packet

efficiency and power efficiency. Packet efficiency means the

ability of the algorithm to minimize the total number of

packets sent on wireless link. Power efficiency refers to the

ability to minimize the energy spent by the client that is

running the algorithm [3]. The system performance is

measured in terms of access efficiency, which is minimizing

the period of time from when a mobile computer issuing a data

request until the time the data item is received. These are the

criteria that must be considered in cache management for

mobile environment [2]. Mobile devices have limited amount

of internal storage (usually around 128GB at most). And after

the operating system and applications, the remaining space for

digital content is much less than this nominated value [4].

Some of the devices can extend their capacity by using a

memory card, but the capacity of these cards is also limited.

The speed of a wireless connection is low in comparison to a

wired connection. The highest wireless speed is often limited

by the use of the Fair User Policy (FUP) by the mobile

connection provider. The FUP restricts the quantum of the

downloaded data in a period of time. In addition, the speed of

a wireless connection can vary. The newest connection

technologies are not available everywhere, but mobile users

wish to access their data as fast as possible. So far, users

download the same data repeatedly; we can use a cache to

increase system performance. A cache is an intermediate

component which stores data that can be potentially used in

the future. While using a cache; the overall system

performance is improved. The cache is commonly used in
database servers, web servers, file servers, storage servers, etc. [5].

A number of caching policies have been discussed and their

performances have been tested in an attempt to minimize

several cost metrics such as hit ratio, byte hit ratio, average

latency and total power. A good a comparative study that

describes several cache replacements polices can be found in.

This study classifies cache policies into categories. The focus

of our work is on evaluating cache replacement policies that

aims at improving cache hit ratio, which is the most general

metric to evaluate the performance of a caching system.

In the literature, there are some studies regarding early

towards finding a collection of algorithms that have a

profound impact on the performance of the network, many

caching and replacement algorithms have been proposed.

Zeitunlian et al. proposed a cache replacement strategy, the

Least Unified Value strategy (LUV) to replace the Least

Recently Used (LRU) that Scalable Asynchronous Cache

Consistency Scheme (SACCS) [6]. Wong et al. claimed that

there are a sufficient numbers of good policies, and further

proposals would only produce minute improvements so that

the focus should be fitness for purpose rather than proposing

any new policies, and identifies the appropriate policies for

proxies with different characteristics such as proxies with a

small cache, limited bandwidth, and limited processing power

[7]. Waleed Ali et al. presented a survey and discussed some

studies that take into consideration impact of integrating both

web caching and web prefetching together [8]. Bžoch et al.

presented shortcoming of caching algorithms, proposes LFU-

SS and LRFU-SS as new caching policies testing them with

commonly used caching policies like LRU and LFU [5].

The remaining of this paper are organized as follows:

Section-2 describes the caching techniques where classified

into; Partitioned storage, distributed cache architecture and

cache replacement policy were divided into three categories:

simple, sophisticated and hybrid algorithms, Section-3 shows

most common performance metrics to evaluate the

performance of represented cache policies, Section-4 details

how our experimental setup referring to software simulator,

generated tested database and methodology, Section-5 shows

in details evaluation results according to experimental setup

section, and finally, concluding recommendations from the

obtained results.

II. CACHING TECHNIQUES

Web caching is one of the most successful solutions for

improving the performance of Web-based system. In Web

caching, the popular web objects that likely to be visited in the

near future are stored in positions closer to the user like client

machine or cache server. Thus, the web caching helps in

reducing Web service bottleneck, alleviating of traffic over the

Internet and improving scalability of the Web system. Fig. 1

shows a simple local caching architecture. When a user

requests a content which is already cached in the local cache

server, the local cache server sends the cached content to the

user without requesting the content from the original remote

server. Consequently, local caching can both increase the

users' quality of experience and can decrease the network

traffic [7].

Caching technique has attractive advantages to Web

participants, including end users, network managers, and

content creators: (i) decreases user perceived latency, (ii)

reduces network bandwidth usage, (iii) reduces loads on the

origin servers, and (iv)saving clients' battery power [9].

Caching techniques can be divided into three categories:

partitioned storage, distributed caching, and cache

replacement policy.

Fig. 1. Simple local caching architecture

A. Partitioned storage

Mobile clients do not have enough capacity for storing a

huge amount of the data in general. Partitioning provides

MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 41, ISSUE 3, SEPTEMBER 2016 E:

scalability and reliability for applications. When the total size

of the data is greater than the heap in any single member,

partitioned regions can provide the needed data management

[2]. An effective solution is to partition the large file size as

streaming media into small chunks and only cache parts of file

in local cache. Partial caching techniques can be classified into

two types: (i) Time-based partial caching such as prefix

caching and arbitrary segments and (ii) Bandwidth-based

partial caching as Video Staging [10]. These caching

techniques include segmentation of streaming objects, dynamic

caching, and self-organizing cooperative caching [11]

B. Distributed cache server architecture

Another approach to implement large-scale cache is

distributed caching. In distributed caching, no intermediate

caches are set up and only caches at the edge of the network

cooperate to serve each other’s misses. In the year of 00 , it

was realized that distributed caching were becoming popular

with the emerging of new applications that allow distributions

of web pages, images, and music since distributed caching has

lower transmission times than distributed caching due to the

fact of most traffic flows through less congested lower

network levels [12]. The benefits of distributed caching are

twofold: they allow balancing the server load during busy

period and they allow scaling the caching system's capacity.

Most of distributed file systems (DFS) are developed for wired

clients and do not support mobile devices. Accessing files

from mobile devices requires algorithms which take into

account changing communication channels caused by user’s

movement. DFS that are widely used were made before

mobile clients have been spread, and it is difficult to develop

mobile client applications now. None of current DFS e.g.

Andrew File System (AFS), Network File System (NFS),

Coda, InterMezzo, BlueFS, CloudStore, GlusterFS, XtreemFS,

dCache, MooseFS, Ceph and Google File System does not

have suitable clients for mobile devices [13].

.

C. Cache replacement policy

Due to the limited cache space, suitable replacement policy

is required to decide which content should be replaced for a

newly arrived content when cache is full. The decision which

objects to remove is made by a caching policy algorithm (also

called replacement policy or removal policy). The problem is

to find the value of an object, and whether it should be cached,

without dramatically increasing computation and

communication overheads. There are many factors of caching

that influence the replacement process include: recency,

frequency, size, cost of fetching the object, modification time

(time of last modification), and expiration time (time when an

object gets stale and can be replaced immediately) [14]; as

shown in Fig. 2

Fig. 2. Cache Policy

A page replacement policy looks at the limited information

about accesses to the pages provided by hardware, and tries to

guess which pages should be replaced to minimize the total

number of page misses, while balancing this with the costs

(primary storage and processor time) of the algorithm itself.

This was the basis why we require a page replacement

algorithm. Cache replacement policy can be divided into three

categories: simple, sophisticated and hybrid algorithms.

Table1. Presents a simple comparison between them, and they

can be defined in details as follows:

 - Simple Caching Algorithms

Simple caching algorithms do not use any statistics or

additional information for data replacement. For replacement

decision, they usually employ other mechanisms. Examples of

simple caching algorithms are Random (RAND) Algorithm,

First-In First-Out (FIFO) Algorithm, FIFO with 2nd chance

(FIFO2) Algorithm and CLOCK Algorithm.

RAND is a simple replacement policy which chooses data

to be replaced based on random selection [15]. While this

strategy provides a very easy implementation as it only

requires a random or pseudo-random generator and only O (1)

additional amount of work per page replacement, it has many

drawbacks such as it doesn’t take user’s behavior into account

or even take any advantage of any temporal or spatial

localities.

FIFO is another low-overhead paging algorithm which

chooses data to be replaced based on the oldest in the cache.

Where ordering cache data reference in a queue, oldest data at

front and newest at end. When new data are come to full

cache, the data from queue header are evicted, and the new

data are inserted to queue tail [16]. While this strategy

provides simple implementation as it has a low overhead, it

has many drawbacks same as of RAND policy – FIFO policy

does not take user’s behavior into account, might throw out

useful data may be used soon, requires a queue Q to store data

references in the cache, Data are enquired a de-queue

operation on Q to determine which one to evict.

FIFO2 is a modification of the FIFO caching policy.

E: IBRAHIM Y. ABDEL-BASET, MOHAMED A. MOHAMED, AHMED SH. SAMRA AND AHMED ABOU-TALEB

FIFO2 stores the data units in a queue. In contrast to FIFO,

FIFO2 stores a reference bit for each data unit in the queue. If

a cache hit occurs, the reference bit is set to 1. When a

replacement is needed, the oldest unit in the cache with a

reference bit set to 0 is replaced and the reference bit of the

older units is set to 0 at the same time [17].

CLOCK is another simple replacement policy in which all

page frames are visualized to be arranged in form of a circular

buffer that resembles a clock. The hand of the clock is used to

point to the oldest page in the buffer. Each page has an

associated reference bit that is set whenever the particular

page is referenced. The page replacement policy is invoked in

case of a page miss, in which case the page pointed to by the

hand, i.e. the oldest page is inspected. If the reference bit of

the page is set, then the bit is reset to zero and the hand is

advanced to point to the next oldest page. This process

continues till a page with reference bit zero is found. The page

thus found is removed from the buffer and a new page is

brought in its place with reference bit set to zero [18]

 Sophisticated Caching Algorithms

The drawbacks of RAND and FIFO taken into account

where sophisticated algorithms employ some statistical

information about data in the cache: frequency of the accesses

which used by least frequently used (LFU) algorithm, and

recency of last use of data which used by least recently used

(LRU) algorithm.

LFU is a sophisticated replacement policy that chooses

data to be replaced based on data frequently used. Where

using a counter for each data block exists that increases every

time the data block is accessed. When new data are come to

full cache, the data which is less frequent to use is replaced by

the new incoming one [19]. While this strategy has long

sighted, it has many drawbacks such as the data blocks in the

cache that have been accessed for many times in a short period

of time remain in the cache, and cannot be replaced [20].

LRU is a sophisticated replacement policy which uses

temporal locality of the data [13]. This algorithm works on the

time-stamp. When new data are come to full cache, the data

that have not been accessed for the longest time will not be

used in the near future, can be replaced by the new incoming

one [19]. While this strategy provides high adaptability, it has

many drawbacks such as the data block can be replaced even

if the block was accessed for many times. It does not consider

about the frequency of the objects, i.e., how many times that

particular object was referenced. In the recently used one,

according to the Belady's anomaly the more objects the

memory has in the recent time, the fewer object faults/ hit

miss a program will get [21].

LRU-MIN is an enhanced of LRU to minimize the

replacement. This algorithm keeps a smaller size of object in

the cache. If there is any object with Size S in the cache, then

follows the LRU algorithm to evict least recent used object. If

there is no such an object which is having size S in the cache,

then this algorithm evicts the object of size S/2 in the least

recently used order [22].

LRU-Threshold is similar to LRU, but with a subtle

difference is that, an object which is largest than a threshold

size is not inert into the cache [23].

LRU-K is an algorithm keeps the timestamps of the last K

accesses to the data block. When new data are come to full

cache, LRU-K counts so-called Backward K-Distance which

leads to mark data block to replace. LRU-2 is an example of

LRU-K which remembers last two access timestamps for each

data block. It replaces then the data block with the least recent

penultimate reference [24].

MRU Most Recently Used algorithm evicts the most

recently used document from the cache. This algorithm is used

where we have to access the historical information [25].

SLRU Segmented LRU algorithm is similar to LRU-K but

seems easier to implement. Where the cache is divided into

two segments: the protected segment and the probationary

segment. On a miss, data is then pended on the MRU part of

the probationary segment. Hits are added to the MRU part of

the protected segment. As the protected segment has a definite

size, adding a line into the protected segment pushes the LRU

line of the protected segment to the MRU part of the

probationary segment. This method avoids flooding the cache

with data that will not be reused, because the protected

segment contains lines which have been accessed at least

twice. The best results were obtained when the size of the

protected segment is around 80% of the cache. It performs

around 3-4% better than LRU for a cache size of 0.5 Mb [26].

LFU-SS Least Frequently Used-Server Statistics algorithm

works similarly as regular LFU, but with a use server and

local statistics for replacement decision. Where the database

module of the server maintains metadata for the files stored in

the DFS. The metadata records contain items for storing

statistics. These statistics are read and write hits per file, and

global read hits for all files in the DFS. When a user reads a

file from the DFS, the READ_HITS counter is increased, and

sent to the user. When a user wants to write the file content,

the WRITE_HITS counter is increased. Both of these counters

are provided for each requested file. The GLOBAL_HITS

counter is provided on demand. When new data are come to

full cache, the read hits counter for a new file is initialized to

one (the file has been read once). The idea of LFU-SS is that

firstly calculate the read hits counter from the statistics from

the server. If the new file in the cache is frequently

downloaded from the server, the file is then prioritized in

comparison to a file which is not frequently read form the

server. For cached files in LFU-SS, use three operations:

inserting new file into cache, removing file from the cache,

and updating file read hits. LFU-SS prevent ageing files in the

cache by division the READ_HITS client by two. Calculation

of priorities for replacement is not computationally demanding

because of relatively low number of units in the cache. LFU-

SS achieves up to 11% of improvement over LRU in smaller

cache capacities [13].

 Hybrid Caching Algorithms

The drawbacks of LRU and LFU replacement policies

result in hybrid algorithms. These algorithms use a

MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 41, ISSUE 3, SEPTEMBER 2016 E:

combination two or more algorithms to get better results in

cache hit ratio.

2Q Two Queues algorithm is an improving the detection of

real hot data and remove cold data faster from the main

memory. This algorithm works by two separate queues. One is

maintained as LRU queue serves for so-called hot data blocks

that have been accessed more than once, and the other as FIFO

queue serves for so-called cold data blocks that have been

referenced only once. When new data comes to full cache, it

stores in FIFO-queue. If the same data block is accessed for

the second time, it moves to the LRU-queue. 2Q algorithm
gives approximately 5% improvement in hit ratio over LRU [27].

MQ Multiple Queues algorithm is a replacement policy

which chooses data to be replaced based on hit’s count

priority. Every queue has its own priority. The data blocks

with lower hit’s count are stored in lower priority queue. If the

number of hit’s count reaches the threshold value, the data

block is moved to the tail of queue with higher priority. When

the replacement is needed, the data blocks from the queue with

the lowest priority are replaced [28].

ARC Adaptive Replacement Cache algorithm is similar to

2Q replacement policy but it uses two LRU-queues. These

queues maintain the entries of recently evicted data blocks.

The two queues remember twice the number of pages that

would fit in the cache. The ARC algorithm dynamically

balances recency and frequency. It is simple to implement and

has low computational overhead while performing well across

varied workloads [29]. This algorithm performs as well as the

fixed replacement policy with the optimal p but it is dynamic

and no parameter needs to be tuned before and hence should

perform the same way through all workloads and cache

parameters, contrary to the other policies presented above

[0].

LRFU Least Recently/Frequently Used algorithm is

spectrum of policies that subsumes LRU and LFU Policies.

Unlike the LRU and LFU policies that consider frequency or

recency only, the LRFU policy takes into account both the

frequency and recency of references in its replacement

decision. Furthermore, unlike LRU_K policy that considers

only the last K references to a block. The LRFU policy

associates a value with each block. This value is called

Combined Recency and Frequency (CRF) and considers all

the past references to a block to appraise the likelihood that

the block may be used in the near future. Each reference to a

block in the past contributes to this value and a reference's

contribution is determined by a weighing function F(x) is

calculated which considers the data objects reference time

span from in the past to the current time [31].

LRFU-SS Least Recently Frequently Used-Server

Statistics algorithm is other hybrid caching replacement

policies; it is a combination of LFU-SS and standard LRU.

Which chooses data to be replaced based on final priority

selection. Where computes the priority of LRU and LFU-SS

for each file in the cache. The final priority of LRU and LFU-

SS interval 0 to 65535, where higher number means that the

file is more suitable for storing in the cache. The priority value

for the LFU-SS algorithm is calculated by using linear

interpolation between the greatest and the lowest read hits

values. The priority value for the LRU algorithm is calculated

from the timestamp for last access to the file. When new data

are come to full cache, the file with the lowest final priority is

evicted, and the new data are inserted. LRFU-SS achieves up

to 10% of improvement over LRU and LFU in larger cache

capacities. While this strategy provides, it has many

drawbacks such as it needs to recalculate priorities for all

cached units every time one cached unit is requested, and

needs to reorder the heap of the cached files because of

changes of these priorities [5].

LRU/LFU Least Recently Used/Least Frequently Used

algorithm is hybrid caching used both recency and frequency.

Where this policy included a threshold value i.e. TSD to evict

the historical object which are not been used by the long time.

Frequency division (FD) is used to calculate the average

frequency. When a new object is entering, it checks the least

time and check the priority with the frequency division. If the

priority is greater than frequency division, then look for the

second smallest timestamp. If the difference between both the

time-stamp is greater than TSD, then removes the first least

document else if not, then calculate the priority with the
frequency division. If the priority is greater than the frequency

division than removes the first document else second [19].

III. PERFORMANCE METRICS

The appropriate caching policy will be selected based on

comparing the performance of different caching policy

algorithms to be adopted in mobile learning devices. This

selection is based on two goals: to minimize the costs of

counting the priority of data block in the cache; it should be

also taken into account that the mobile devices are limited

capacity. The speed of connection from the mobile device to
the remote server can vary and to increase cache hit ratio, by

decreasing the network traffic.

TABLE .

COMPARISON OF CACHE REPLACEMENT TECHNIQUES

Caching

Technique
Brief Description

Available

replacement

Policy

Performance to LRU

Simple

This technique does not

use any statistics or

additional information to

evict web object.

RAND,

FIFO,

FIFO2,

CLOCK.

RAND 22% worse

[]

FIFO 12-20% worse

[]

Sophisticated

This technique employs

some statistical

information about data

in the cache to evict web

object.

LFU, LRU,

LRU-MIN,

LRU-

Threshold,

LRU-K,

MRU,

SLRU, LFU-

SS.

LRU-k Around 50%

better for very large

database buffers [24]

SLRU Around 3-4%

better [26]

Hybrid

This technique based on

a combination of two or

more algorithms to evict

web object.

2Q, MQ,

ARC,

LRFU,

LRFU-SS,

LRU/LFU.

2Q5-10% better [27]

LRFU-SS achieves

up to 10% of

improvement over

LRU [13]

E: IBRAHIM Y. ABDEL-BASET, MOHAMED A. MOHAMED, AHMED SH. SAMRA AND AHMED ABOU-TALEB

To evaluate the performance of the cache, performance

metrics are being used. Some common metrics that are used to

quantify the performance such as are Hit rate, byte hit rate,

bandwidth saved, delay saving ratio are most commonly used

which can be defined as follows

 - Hit Rate (HR)

The Hit Rate (HR) is the percentage of all requests object

which are found in the cache instead of transferred from the

requested server [33], this can be expressed as:

 Ri
=HR

Ri ii fh

Where ih is the number of object hit for an object i, if is

the total number of request for the object i, and R is the set of

objects which accessed.

 - Byte Hit Ratio (BHR)

This metric is similar to hit rate, except it

emphasizes the total saved bytes by caching certain

objects. It is the percentage of all data that is

transfer straight from the cache rather than from

requested server [34], described as:

 RiHR =
Ri iiii fShSB ()

where iS is the size of the object i.

 - Bandwidth Saved (BS)

The bandwidth saved tries to quantify the decrease in the

number of bytes retrieved from the original servers reducing

the amount of the bandwidth consumed. This is directly

related to byte hit ratio [35].

 - Delay Saving Ratio (TDS)

The measure the latency (the interval between the time the

user requests for a certain content and the time at which it

appears in the user browser) of fetching an object [35]. It has

been defined as the sum of penalty times of the hits over the

sum of the penalty times from all the requests [36], can be

expressed as:

 RiDS =
Ri iiii fdhdT ()

Where id is the delay which occurs to retrieve the object from

server

 - Average Downloads Time (TAD)

Due to the inconsistency in download time in account of

traffic variations, performance results based on this metric

may vary [33].This metric tries to find average download time

by:

RiAd 1= RfhdT iii

Where R is the size of R .

These performance metrics are the heart of web caching

algorithm where are used to evaluate the performance of the

replacement algorithms with respect to object which are

present and requested in memory of cache, the saved bytes due

to no retransmission, and the decrease in latency to retrieve an

object which is requested.

IV. EXPERIMENTAL RESULTS

The performance of all presented cashing replacement

policies will be assessed and compared using Cache

Simulation tool which have three parts with Server, Client and

Request generator. Eleven cashing replacement algorithms

have been tested and evaluated: RND, FIFO, Standard LFU,

LRU, LRU-K, MRU, 2Q, MQ, LFU-SS, LRFU, and LRFU-

SS. These cashing algorithms provided the best performance

metrics among all existing web cashing algorithms. Every

caching policy has its own coefficients. We have made 10,000

random requests on files for 500 files with random size

between 5KB and 5GB. We have used cache hit ratio, cache

read hit counts, saved byte, and data transfer decrease needed

to transfer the files as performance indicators. Following

subsections, 5.1, 5.2 and 5.3 discuss more simulation setup

setting.

 Software Simulator

Cache simulator (CS) is a tool which serves for evaluation

of caching policies and consistency control algorithms. It

develops to prevent the main disadvantage of testing caching

policies in a real environment, where it used to evaluate cache

polices based on simulation setting as request input method,

file sizes, cache capacities, and average network speed and

consistency control [5]. CS consists of three parts: Server,

Client and Request generator described as follows: (i) Server

represents storage of files collection. Each file is represented

by a unique ID and size in bytes. Additionally, the server

stores a number of read and writes requests for each file.

When a client demands a file, all the metadata are provided;

(ii) Client is an entity which requests files from the server and

uses the evaluated caching algorithm. During the simulation,

the client receives requests for file access from the Requests

generator. The client increases the counter of requested bytes

by the size of the file and looks into its cache for a possible

cache hit. If the file is found in the cache, the number of cache

read hits is increased. If the file is not in the cache, the file is

downloaded from the server and stored in the cache. At the

same time, the counter maintaining the number of transferred

bytes is increased by the size of the requested file, and (iii)

Requests generator is an entity which knows the files’ ID from

a server, and generates requests for these files.

 Generated Test Database

Before the simulation can start, several input parameters

MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 41, ISSUE 3, SEPTEMBER 2016 E:

have to be set. Firstly, we set request input method. The

requests can be generated randomly by using one of the

random generators–uniformly random, uniformly random with

preference, Zipf random or Gaussian random. We can set

varied parameters for each generator. Each of these generators

may require additional parameters which can be also set. We

used a Gaussian random generator for a simulation with

parameters. Secondly, we have created 500 files with random

size between 500KB and 5GB on the server side. The size of

files respects the fact that mobile clients usually accesses

smaller files from the remote storage. We have made 10,000

random requests on files where some of the files are

prioritized and some other files are accessed less often.

Reflecting the limited capacity of mobile devices; we used

cache sizes ranging from 8MB to 1024MB. For each cache

size, the cache polices will be evaluated separately. The

simulation setting lists and parameters

TABLE .

PARAMETERS SETTING FOR SIMULATION

Description Setting

Number of files 00

File popularity Gaussian Random

Number of requests 0,000

File size 500KB ~ 5GB

File bit rate 80 Mbps

Cache sizes 8~1024MB

LRU-K K =3, correlated reference period=7

2Q 50% of cache capacity for FIFO

MQ
Life time=100, Out queue capacity=10,

Queue count=5

LRFU P =2, λ=0.0

LRFU-SS K1=0.35, K2=1.1

 Methodology

The performance of any cache policy depends on one or

more parameters; some of them are related to the training

process of their caching policy such as RND, FIFO, Standard

LFU, LRU, MRU, and LFU-SS. And other parameters related

to the testing process such as LRU-K (with k=3, correlated

reference period=7), 2Q (with 50% of cache capacity for

FIFO), MQ (with life time=100, out queue capacity=10, queue

count=5), LRFU (with P=2, λ=0.0) and LRFU-SS (with

K1=0.35, K2=1.1). Parameters of caching policies were

obtained while changing their correlated periods and the best

results were selected for each policy [13].

Performance indicators are used to evaluate the

performance of the replacement algorithms. Four metrics will

be used: (i) cache hit ratio (HR); (ii) Cache Read Hit Counts

(represents the number of requests which have been served by

the cache), we have observed the read hits count, and then we

have computed read hit ratio. On the other side, the cache read

hits count deals only with the count of the files in the cache

that were found in the cache. (iii) Saved Byte, we use whole

file as a basic caching unit. Hence, the policy with the best

read hits count does not have to be the best caching policy in

saving data traffic because of variable file size, and (iv) data

transfer decrease needed to transfer the files (which is also the

number of bytes transferred without usage of a cache) as

performance indicators.

V. EVALUATION RESULTS

In this subsection, we give the results of the simulations.

We have observed performance metrics which applies for

caching algorithms according to experimental setup section.

We show the results as summaries tables for Read Hit Ratio,

Saved Byte and Data Transfer Decrease Ratio. On the other

hand, we framed result as figures for Read Hit Counts, Saved

Byte Ratio and Data Transfer Decrease.

Overall, results in this experiment show that LFU-SS

achieves up to 2% improvement in saving network traffic in

smaller cache sizes over other caching policies. LRU-K

achieves up to 1% improvement in higher cache sizes. In the

experiment, we have observed the read hits count, and then we

have computed read hit ratio. Read hits count represents the

number of requests which have been served by the cache. The

experiment used cache sizes from 8MB to 1024MB. Table 3

summarizes Read Hit Ratio, and Fig. 3 depicts read hit count

for each of the implemented algorithms. For each simulated

caching policy, we have had the same scenario of accessed

files

TABLE .

READ HIT RATIO VS. CACHE SIZE

C
a

c
h

in
g

P
o

li
c
y

 Cache Size [MB]

8 8 0

RND .08 . 0. 8 8. 8. . . 0.

FIFO . . 0. 8. . 8 . .8 8 .

LFU 0. 8 .0 . 8 . . .88 . .

LRU . . . 0.88 . 8. . .

LRU-K 0 .

MRU . .0 8 .

2Q

MQ 0.0 8. .

LFU-SS 0. .8 .0 . 8 . .0 8. .

LRFU 8. 8 .

LRFU-

SS
8. 8 0.8 . . . 8 .8 8. . 8

For different cache sizes we have different better policy.

LFU-SS has the best result for cache size 8M, 32M and

1024M. For cache sizes from 128MB to 256M, LRFU is a

better choice. Standard LFU is better at 16M, 2Q is better at

64M and LRU-K is better at 512M

E: 8 IBRAHIM Y. ABDEL-BASET, MOHAMED A. MOHAMED, AHMED SH. SAMRA AND AHMED ABOU-TALEB

Fig. 3. Read Hit Counts vs. Cache size

Next, we measured the saved bytes. Table 4 summarizes

the data saved byte for different caching policies. As shown is

Fig. 4, represent saved byte ratio counts with different cache

size.

TABLE .

SAVED BYTE VS. CACHE SIZE

C
a

c
h

in
g

P
o

li
c
y

 Cache Size [MB]

8 8 0

RND 8 0 0 0

FIFO 0 0 8 0 0

LFU 0 0 0 08

LRU 8 0 08

LRU-K 8 0 0 0 08 8

MRU 0 0 0 8 0

2Q 8 0 8 08

MQ 0 0 8 80 0 0 0 8 08

LFU-SS 8 8 0

LRFU 8 8 0 088 8 088

LRFU-

SS
 0 8 88 8 0 0 0 0

LFU-SS has the best result in saved bytes for cache sizes

from 8MB to 64MB and 1024MB. For cache sizes from

128MB to 512MB, LRU-K is a better choice. On the other

side, the cache read hits count deals only with the count of the

files in the cache that were found in the cache. We use whole

file as a basic caching unit. Hence, the policy with the best

read hits count does not necessarily the best caching policy in

saving data traffic because of variable file size.

Saved Byte Ratio for each of the implemented algorithms

can be depicted in Fig (4). Consecutively, for smaller cache

size (8MB to 64MB) LFU-SS can achieve up to 11%

improvement over commonly used LRU cache policy. For

larger cache sizes (128MB to 512MB), LRU-K achieved up to

10%in saved byte ratio

Fig. 4. Saved Byte RatioCounts vs. Cache size

Finally, we measured the data transfer decrease. The total

size of transferred files was 22.8GB. Table 5 summarizes

different caching policies with its data transfer decrease ratio

(DTDR). Fig. 5 shows data transfer decrease for different

cache policies.

TABLE .

DATA TRANSFER DECREASE RATIO VS. CACHE SIZE

C
a

c
h

in
g

p
o

li
c
y

Cache Size [MB]

RND . . 8 . 8 . . . 8 . .

FIFO .0 8 . 0 8 . 8 . 8 . .8 8.0 0.

LFU 0. 8 . 80.0 . 8 0. . 8. 8.8

LRU . . 88. . 8.0 .0 8 . 8.

LRU-

K
 . 8 . 0 80. 0.8 8.8 . 8. 8. 8

MRU .8 . . . 8

2Q . 8 . 8. 8 8. . .8 8.8 8.8

MQ . 8 8 . 80. 8 8.

LFU-

SS
 0. 8 . . 8 8. 0.0 . . 0 8.

LRFU . 8 .8 8. .0 8.8 . . 8.

LRFU

-SS
 . 88. 8 .0 . .8 . . 8.

For cache sizes from 8MB to 64MB and 1024MB, LFU-SS

has the best result in data transfer decreasing ratio where can

achieve up to 10%. For cache sizes from 128MB to 512MB,

LRU-K achieves up to 10% of improvement over LRU in

large cache sizes.

MANSOURA ENGINEERING JOURNAL, (MEJ), VOL. 41, ISSUE 3, SEPTEMBER 2016 E:

Fig. 5. Data Transfer Decrease vs. Cache size

LFU-SS has the best result in decreasing network traffic

for cache sizes from 8MB to 64MB and 1024MB. For cache

sizes from 128MB to 512MB, LRU-K is a better choice.

Experimental simulations show the following: (i) Policy

with the best read hits ratio is not necessarily the best one in

decreasing data traffic; (ii) For larger cache size all policies

near to have the same values that clearly at cache size

1024MB.We have the worst values up to 23% - according to

commonly used LRU cache policy- belong to MRU policy;

(iii) LRU-SS is the best cache algorithm for cache sizes (8MB,

16MB, 32 MB, 64MB and 1024MB) which achieve up to 11%

of improvement over LRU cache policy, and (iv) The other

best cache policy is LRU-K for cache size (128MB, 256MB

and 512MB), that achieve up to 10% of improvement over

LRU cache policy. While using LRU-K with a cache size of

512MB, it saved up 71% of the network traffic.

VI. CONCLUSION

This article presented a comparative study of the

performance of different cashing replacement policies for

caching files in mobile devices. Our goals in selecting caching

algorithms for mobile learning were to decrease network

traffic, and minimize the power consumption of mobile

battery. These two goals were set because of the varying

network connection quality of mobile devices caused by the

movement of the user, and because of the limited performance

of the mobile devices. The comparison of caching policies

made in the section experimental results shows that the

introduced algorithms act better in comparison to commonly

used caching policies like LRU and LFU. For smaller cache

size, LFU-SS is suitable caching policy; for larger cache size,

LRU-K is better choice.

In our future work, we will implement cache and caching

policy for smartphone client platform applications. Using two

algorithms, one for smaller cache size and the other for lager

cache size may have complexity. In our future work, we

intend to develop an algorithm for all cache sizes. Wireless

data transmissions in mobile information systems have

bounded bandwidth and client’s limited battery power that

makes the connection to the cellular networks unstable and

expensive. Wherefore, we will implement so-called

online/offline operations. In this case, the user can access

online for updates and access for cached files even after

disconnection as offline

REFERENCES

[] Hashemi, Masoud, et al. "What is mobile learning? Challenges and

capabilities." Procedia-Social and Behavioral Sciences 0 0): -
 8 .

[] Rathore, Rooma, and Rohini Prinja. "Caching Schemes in Mobile

Databases."
[] Imielinski, Tomasz, and S. Viswanathan. "Adaptive wireless information

systems." Proceedings of the Special Interest Group in Database Systems

(SIGDBS) Conference. 1994.
[] CNET Corporation,“Wireless mobile storage expander roundup: Frequent

travelers, you'll want one of these”, 0 . [Online]. Available:

http://www.cnet.com/
[] Bžoch, Pavel, et al. "Design and Implementation of a Caching Algorithm

Applicable to Mobile Clients." Informatica . 0).

[] Zeitunlian, Aline, and Ramzi A. Haraty. "An Efficient Cache
Replacement Strategy for the Hybrid Cache Consistency

Approach." World Academy of Science, Engineering and Technology

 0 0): 8- .
[] Wong, Kin-Yeung. "Web cache replacement policies: a pragmatic

approach."Network, IEEE 0. 00): 8- .

[8] Ali, Waleed, Siti Mariyam Shamsuddin, and Abdul Samad Ismail. "A
survey of Web caching and prefetching." International journal of

advances in soft computing and its application . 0): 8- .

[] Davison, Brian D. "A web caching primer." Internet Computing,
IEEE . 00): 8- .

[0] Tang, Xueyan, Jianliang Xu, and Samuel T. Chanson, eds. Web content

delivery. Vol. 2. Springer Science & Business Media, 2006.
[] Jinlong, Wu. "Analysis of the Performance of CacheReplacement Policies

for aVideo-on-Demand System." (2013).

[] Rodriguez, Pablo, Christian Spanner, and Ernst W. Biersack. "Analysis of
web caching architectures: hierarchical and distributed

caching." Networking, IEEE/ACM Transactions on . 00): 0 - 8.

[] Bzoch, Pavel, et al. "Towards caching algorithm applicable to mobile
clients."Computer Science and Information Systems (FedCSIS), 2012

Federated Conference on. IEEE, 2012

[] Rathore, Roma, and Rohini Prinja. "An Overview of Mobile Database
Caching."CiteSeerX, doi 0. . 00 00): 8 .

[] Reed, Benjamin, and Darrell DE Long. "Analysis of caching algorithms

for distributed file systems." ACM SIGOPS Operating Systems
Review 0.): - .

[] Swain, Debabrata, et al. "Analysis and Predictability of Page

Replacement Techniques towards Optimized Performance." (2011): 12-
 .

[] Draves, Richard. "Page Replacement and Reference Bit Emulation in

Mach."USENIX Mach Symposium. 1991.
[8] Chavan, Amit S., et al. "A Comparison of Page Replacement

Algorithms."ACSIT International Journal of Engineering and

Technology . 0).
[] Kapil Arora, Dhawaleswar Rao Ch . "Web Cache Page Replacement by

Using LRU and LFU Algorithms with Hit Ratio: A Case Unification."
International Journal of Computer Science and Information Technologies

5.3 (2014): 3232 – .

[0] Press, Avi, et al. "Caching Algorithms and Rational Models of Memory."
[] Harish, Polanki, and Wilson Thomas. "A Novel Approach to Enhance the

Efficiency of Distributed Cooperative Caching in SWNETs." Journal of

Computer Science & Systems Biology 8. 0): .
[] Kuppusamy, P., B. Kalaavathi, and S. Chandra. "Optimal Data

Replacement Technique For Cooperative Caching In Manet." ICTACT

Journal on Communication Technology . 0).
[] Vakali, A. I. "LRU-based algorithms for Web cache

replacement." Electronic Commerce and Web Technologies. Springer

Berlin Heidelberg, 2000. 409- 8.
[] O'neil, Elizabeth J., Patrick E. O'neil, and Gerhard Weikum. "The LRU-K

page replacement algorithm for database disk buffering." ACM SIGMOD

Record .): - 0 .

E: 0 IBRAHIM Y. ABDEL-BASET, MOHAMED A. MOHAMED, AHMED SH. SAMRA AND AHMED ABOU-TALEB

[] Kakde, Vinit A., and Sanjay K. Mishra. "Effective Web Cache

Algorithm."International Journal of Electronics, Communication & Soft
Computing Science and Engineering (IJECSCSE) Volume 0).

[] Karedla, Ramakrishna, J. Spencer Love, and Bradley G. Wherry.

"Caching strategies to improve disk system performance." Computer .
): 8- .

[] Johnson, Theodore, and Dennis Shasha. "X3: A Low Overhead High

Performance Buffer Management Replacement Algorithm." (1994).
[8] Zhou, Yuanyuan, James Philbin, and Kai Li. "The Multi-Queue

Replacement Algorithm for Second Level Buffer Caches." USENIX

Annual Technical Conference, General Track. 2001.
[] Megiddo, Nimrod, and Dharmendra S. Modha. "ARC: A Self-Tuning,

Low Overhead Replacement Cache." FAST. Vol. 3. 2003.
[0] Damien, Gille. Study of different cache line replacement algorithms in

embedded systems. Diss. PhD thesis, KTH, 2007.

[] Lee, Donghee, et al. "LRFU: A spectrum of policies that subsumes the
least recently used and least frequently used policies." IEEE transactions

on Computers 00): - .

[] Al-Zoubi, Hussein, Aleksandar Milenkovic, and Milena Milenkovic.

"Performance evaluation of cache replacement policies for the SPEC
CPU2000 benchmark suite." Proceedings of the 42nd annual Southeast

regional conference. ACM, 2004.

[] Joy, Preetha Theresa, and K. Poulose Jacob. "Cache replacement policies
for cooperative caching in mobile ad hoc networks." arXiv preprint

arXiv:1208.3295(2012).

[] ElAarag, Hala, Sam Romano, and Jake Cobb. Web Proxy Cache
Replacement Strategies: Simulation, Implementation, and Performance

Evaluation. Springer Science & Business Media, 2012.

[] Obaidat, Mohammad S., and Georgios I. Papadimitriou, eds. Applied
system simulation: methodologies and applications. Springer Science &

Business Media, 2012.
[] Cárdenas, L. G., et al. "Analysis of Web-Proxy Cache Replacement

Algorithms under Steady-state Conditions." WEBIST (1). 2007.

